Matching Items (342)
149710-Thumbnail Image.png
Description
Fuel cells, particularly solid oxide fuel cells (SOFC), are important for the future of greener and more efficient energy sources. Although SOFCs have been in existence for over fifty years, they have not been deployed extensively because they need to be operated at a high temperature (∼1000 °C), are expensive,

Fuel cells, particularly solid oxide fuel cells (SOFC), are important for the future of greener and more efficient energy sources. Although SOFCs have been in existence for over fifty years, they have not been deployed extensively because they need to be operated at a high temperature (∼1000 °C), are expensive, and have slow response to changes in energy demands. One important need for commercialization of SOFCs is a lowering of their operating temperature, which requires an electrolyte that can operate at lower temperatures. Doped ceria is one such candidate. For this dissertation work I have studied different types of doped ceria to understand the mechanism of oxygen vacancy diffusion through the bulk. Doped ceria is important because they have high ionic conductivities thus making them attractive candidates for the electrolytes of solid oxide fuel cells. In particular, I have studied how the ionic conductivities are improved in these doped materials by studying the oxygen-vacancy formations and migrations. In this dissertation I describe the application of density functional theory (DFT) and Kinetic Lattice Monte Carlo (KLMC) simulations to calculate the vacancy diffusion and ionic conductivities in doped ceria. The dopants used are praseodymium (Pr), gadolinium (Gd), and neodymium (Nd), all belonging to the lanthanide series. The activation energies for vacancy migration between different nearest neighbor (relative to the dopant) positions were calculated using the commercial DFT code VASP (Vienna Ab-initio Simulation Package). These activation energies were then used as inputs to the KLMC code that I co-developed. The KLMC code was run for different temperatures (673 K to 1073 K) and for different dopant concentrations (0 to 40%). These simulations have resulted in the prediction of dopant concentrations for maximum ionic conductivity at a given temperature.
ContributorsAnwar, Shahriar (Author) / Adams, James B (Thesis advisor) / Crozier, Peter (Committee member) / Krause, Stephen (Committee member) / Arizona State University (Publisher)
Created2011
150047-Thumbnail Image.png
Description
Amorphous oxide semiconductors are promising new materials for various optoelectronic applications. In this study, improved electrical and optical properties upon thermal and microwave processing of mixed-oxide semiconductors are reported. First, arsenic-doped silicon was used as a model system to understand susceptor-assisted microwave annealing. Mixed oxide semiconductor films of indium zinc

Amorphous oxide semiconductors are promising new materials for various optoelectronic applications. In this study, improved electrical and optical properties upon thermal and microwave processing of mixed-oxide semiconductors are reported. First, arsenic-doped silicon was used as a model system to understand susceptor-assisted microwave annealing. Mixed oxide semiconductor films of indium zinc oxide (IZO) and indium gallium zinc oxide (IGZO) were deposited by room-temperature RF sputtering on flexible polymer substrates. Thermal annealing in different environments - air, vacuum and oxygen was done. Electrical and optical characterization was carried out before and after annealing. The degree of reversal in the degradation in electrical properties of the thin films upon annealing in oxygen was assessed by subjecting samples to subsequent vacuum anneals. To further increase the conductivity of the IGZO films, Ag layers of various thicknesses were embedded between two IGZO layers. Optical performance of the multilayer structures was improved by susceptor-assisted microwave annealing and furnace-annealing in oxygen environment without compromising on their electrical conductivity. The post-processing of the films in different environments was used to develop an understanding of mechanisms of carrier generation, transport and optical absorption. This study establishes IGZO as a viable transparent conductor, which can be deposited at room-temperature and processed by thermal and microwave annealing to improve electrical and optical performance for applications in flexible electronics and optoelectronics.
ContributorsGadre, Mandar (Author) / Alford, Terry L. (Thesis advisor) / Schroder, Dieter (Committee member) / Krause, Stephen (Committee member) / Theodore, David (Committee member) / Arizona State University (Publisher)
Created2011
148116-Thumbnail Image.png
Description

Humans use emotions to communicate social cues to our peers on a daily basis. Are we able to identify context from facial expressions and match them to specific scenarios? This experiment found that people can effectively distinguish negative and positive emotions from each other from a short description. However, further

Humans use emotions to communicate social cues to our peers on a daily basis. Are we able to identify context from facial expressions and match them to specific scenarios? This experiment found that people can effectively distinguish negative and positive emotions from each other from a short description. However, further research is needed to find out whether humans can learn to perceive emotions only from contextual explanations.

ContributorsCulbert, Bailie (Author) / Hartwell, Leland (Thesis director) / McAvoy, Mary (Committee member) / School of Life Sciences (Contributor) / School of Criminology and Criminal Justice (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
Description

Many nanotechnology-related principles can be demonstrated in a way that is understandable for elementary school-aged children through at-home activity videos. As a part of a National Science Foundation funded grant, Dr. Qing Hua Wang’s research group at Arizona State University developed a nanotechnology-related activity website, Nano@Home, for students. In conjunction

Many nanotechnology-related principles can be demonstrated in a way that is understandable for elementary school-aged children through at-home activity videos. As a part of a National Science Foundation funded grant, Dr. Qing Hua Wang’s research group at Arizona State University developed a nanotechnology-related activity website, Nano@Home, for students. In conjunction with ASU’s virtual Open Door 2021, this creative project aimed to create activity videos based on the Nano@Home website to make the activities more interactive for students.

ContributorsOliver, Ruth Kaylyn (Author) / Wang, Qing Hua (Thesis director) / Krause, Stephen (Committee member) / Materials Science and Engineering Program (Contributor, Contributor) / Watts College of Public Service & Community Solut (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
148135-Thumbnail Image.png
Description

Within the pediatric hospitalization experience, fear and anxiety are two emotions commonly felt by children of all ages. Hospitalized children can greatly benefit from interventions designed to help them cope with these emotions throughout their medical experiences. This study draws on each of our clinical experiences as volunteers at Phoenix

Within the pediatric hospitalization experience, fear and anxiety are two emotions commonly felt by children of all ages. Hospitalized children can greatly benefit from interventions designed to help them cope with these emotions throughout their medical experiences. This study draws on each of our clinical experiences as volunteers at Phoenix Children’s Hospital, and uses a qualitative analysis of three semi-structured interviews with currently employed Child Life Specialists to understand and analyze the use of medical play, a form of play intervention with a medical theme or medical equipment. We explore the goals and benefits of medical play for hospitalized pediatric patients, the process of using medical play as an intervention, including the activity design process, the assessments and adjustments made throughout the child’s hospitalization, and the considerations and limitations to implementing medical play activities. Ultimately, we found that the element of fun that defines play can be channeled into medical play activities implemented by skilled Child Life Specialists, who are experts in their field, in clinical settings to promote several different and beneficial goals, including pediatric patient coping.

ContributorsGarciapena, Danae (Co-author) / Aguiar, Lara (Co-author) / Loebenberg, Abby (Thesis director) / Swanson, Jodi (Committee member) / College of Health Solutions (Contributor) / School of Mathematical and Natural Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
148136-Thumbnail Image.png
Description

Within the pediatric hospitalization experience, fear and anxiety are two emotions commonly felt by children of all ages. Hospitalized children can greatly benefit from interventions designed to help them cope with these emotions throughout their medical experiences. This study draws on each of our clinical experiences as volunteers at Phoenix

Within the pediatric hospitalization experience, fear and anxiety are two emotions commonly felt by children of all ages. Hospitalized children can greatly benefit from interventions designed to help them cope with these emotions throughout their medical experiences. This study draws on each of our clinical experiences as volunteers at Phoenix Children’s Hospital, and uses a qualitative analysis of three semi-structured interviews with currently employed Child Life Specialists to understand and analyze the use of medical play, a form of play intervention with a medical theme or medical equipment. We explore the goals and benefits of medical play for hospitalized pediatric patients, the process of using medical play as an intervention, including the activity design process, the assessments and adjustments made throughout the child’s hospitalization, and the considerations and limitations to implementing medical play activities. Ultimately, we found that the element of fun that defines play can be channeled into medical play activities implemented by skilled Child Life Specialists, who are experts in their field, in clinical settings to promote several different and beneficial goals, including pediatric patient coping.

ContributorsAguiar, Lara (Co-author) / Garciapeña, Danae (Co-author) / Loebenberg, Abby (Thesis director) / Swanson, Jodi (Committee member) / School of Life Sciences (Contributor) / Sanford School of Social and Family Dynamics (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
147847-Thumbnail Image.png
Description

The Constitution is a document that was made over 200 years ago by a population that could have never imagined the type of technology or social advances made in the 21st century. This creates a natural rift between governing ideals between then and now, that needs to be addressed. Rather

The Constitution is a document that was made over 200 years ago by a population that could have never imagined the type of technology or social advances made in the 21st century. This creates a natural rift between governing ideals between then and now, that needs to be addressed. Rather than holding the values of the nation to a time when people were not considered citizens because of the color of their skin, there need to be updates made to the Constitution itself. The need for change and the mechanisms were both established by the Framers while creating and advancing the Constitution. The ideal process to go about these changes is split between the formal Article V amendment process and judicial activism. The amendment process has infinite scope for changes that can be done, but due to the challenge involved in trying to pass any form of the amendment through both State and Federal Congresses, that process should be reserved for only fundamental or structural changes. Judicial activism, by way of Supreme Court decisions, is a method best applied to the protection of people’s rights.

Created2021-05
147871-Thumbnail Image.png
Description

Supported catalytic nanoparticles undergo rapid structural transformations faster than many transmission electron microscopes (TEMs) can track. This is the case with platinum nanoparticles supported on cerium oxide (Pt/CeO2) in a CO and O2 gaseous environment. By furthering our understanding of the structural dynamics of the Pt/CeO2 system, improved catalyst design

Supported catalytic nanoparticles undergo rapid structural transformations faster than many transmission electron microscopes (TEMs) can track. This is the case with platinum nanoparticles supported on cerium oxide (Pt/CeO2) in a CO and O2 gaseous environment. By furthering our understanding of the structural dynamics of the Pt/CeO2 system, improved catalyst design principles may be derived to enhance the efficiency of this catalyst. Developing static models of a 2 nm Pt nanoparticle supported on CeO2 and simulating TEM images of the models was found to create similar images to those seen in experimental TEM time-resolved series of the system. Rotations of static models on a ceria support provides a way to understand the experimental samples in three dimensions, which is difficult in two dimensional TEM images. This project expands the possibilities of interpreting TEM images of catalytic systems.

ContributorsBlock, Claire (Author) / Crozier, Peter (Thesis director) / Muhich, Christopher (Committee member) / Materials Science and Engineering Program (Contributor, Contributor) / Watts College of Public Service & Community Solut (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
148173-Thumbnail Image.png
Description

There is surprisingly little scientific literature describing whether a hockey slap shot positively or negatively transfers to a driving golf swing. Golf and hockey use a similar kinematic sequence to send the ball / puck towards a target, but does that directly translate to positive skill transfer between the two

There is surprisingly little scientific literature describing whether a hockey slap shot positively or negatively transfers to a driving golf swing. Golf and hockey use a similar kinematic sequence to send the ball / puck towards a target, but does that directly translate to positive skill transfer between the two sports, or are there other important factors that could result in a negative skill transfer? The aim of this study is to look further into the two kinematic sequences and determine their intertask skill transfer type. A field experiment was conducted, following a specific research design, in order to compare performance between two groups, one being familiar with the skill that may transfer (hockey slapshot) and the other group being unfamiliar. Both groups had no experience in the skill being tested (driving golf swing) and various data was collected as all of the subjects performed 10 golf swings. The results of the data analysis showed that the group with experience in hockey had a higher variability of ball distance and ball speed. There are many factors of a hockey slapshot that are likely to develop a negative intertask skill transfer, resulting in this group's high inconsistency when performing a golf swing. On the other hand, the group with hockey experience also had higher mean club speed, showing that some aspects of the hockey slapshot resulted in a positive skill transfer, aiding their ability to perform a golf swing.

ContributorsLarson, Finn Althea (Author) / Peterson, Daniel (Thesis director) / Cryer, Michael (Committee member) / Materials Science and Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
Description

Soiled: An Environmental Podcast is a six episode series that addresses common environmental topics and debunks myths that surround those topics.

ContributorsTurner, Natalie Ann (Co-author) / Kuta, Tiffany (Co-author) / Jones, Cassity (Co-author) / Boyer, Mackenzie (Thesis director) / Ward, Kristen (Committee member) / Materials Science and Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05