Matching Items (42)
150648-Thumbnail Image.png
Description
Power management plays a very important role in the current electronics industry. Battery powered and handheld applications require novel power management techniques to extend the battery life. Most systems have multiple voltage regulators to provide power sources to the different circuit blocks and/or sub-systems. Some of these voltage regulators are

Power management plays a very important role in the current electronics industry. Battery powered and handheld applications require novel power management techniques to extend the battery life. Most systems have multiple voltage regulators to provide power sources to the different circuit blocks and/or sub-systems. Some of these voltage regulators are low dropout regulators (LDOs) which typically require output capacitors in the range of 1's to 10's of µF. The necessity of output capacitors occupies valuable board space and can add additional integrated circuit (IC) pin count. A high IC pin count can restrict LDOs for system-on-chip (SoC) solutions. The presented research gives the user an option with regard to the external capacitor; the output capacitor can range from 0 - 1µF for a stable response. In general, the larger the output capacitor, the better the transient response. Because the output capacitor requirement is such a wide range, the LDO presented here is ideal for any application, whether it be for a SoC solution or stand-alone LDO that desires a filtering capacitor for optimal transient performance. The LDO architecture and compensation scheme provide a stable output response from 1mA to 200mA with output capacitors in the range of 0 - 1µF. A 2.5V, 200mA any-cap LDO was fabricated in a proprietary 1.5µm BiCMOS process, consuming 200µA of ground pin current (at 1mA load) with a dropout voltage of 250mV. Experimental results show that the proposed any-cap LDO exceeds transient performance and output capacitor requirements compared to previously published work. The architecture also has excellent line and load regulation and less sensitive to process variation. Therefore, the presented any-cap LDO is ideal for any application with a maximum supply rail of 5V.
ContributorsTopp, Matthew (Author) / Bakkaloglu, Bertan (Thesis advisor) / Thornton, Trevor (Committee member) / Ozev, Sule (Committee member) / Arizona State University (Publisher)
Created2012
154176-Thumbnail Image.png
Description
Programmable metallization cell (PMC) technology employs the mechanisms of metal ion transport in solid electrolytes (SE) and electrochemical redox reactions in order to form metallic electrodeposits. When a positive bias is applied to an anode opposite to a cathode, atoms at the anode are oxidized to ions and dissolve into

Programmable metallization cell (PMC) technology employs the mechanisms of metal ion transport in solid electrolytes (SE) and electrochemical redox reactions in order to form metallic electrodeposits. When a positive bias is applied to an anode opposite to a cathode, atoms at the anode are oxidized to ions and dissolve into the SE. Under the influence of the electric field, the ions move to the cathode and become reduced to form the electrodeposits. These electrodeposits are filamentary in nature and persistent, and since they are metallic can alter the physical characteristics of the material on which they are formed. PMCs can be used as next generation memories, radio frequency (RF) switches and physical unclonable functions (PUFs).

The morphology of the filaments is impacted by the biasing conditions. Under a relatively high applied electric field, they form as dendritic elements with a low fractal dimension (FD), whereas a low electric field leads to high FD features. Ion depletion effects in the SE due to low ion diffusivity/mobility also influences the morphology by limiting the ion supply into the growing electrodeposit.

Ion transport in SE is due to hopping transitions driven by drift and diffusion force. A physical model of ion hopping with Brownian motion has been proposed, in which the ion transitions are random when time window is larger than characteristic time. The random growth process of filaments in PMC adds entropy to the electrodeposition, which leads to random features in the dendritic patterns. Such patterns has extremely high information capacity due to the fractal nature of the electrodeposits.

In this project, lateral-growth PMCs were fabricated, whose LRS resistance is less than 10Ω, which can be used as RF switches. Also, an array of radial-growth PMCs was fabricated, on which multiple dendrites, all with different shapes, could be grown simultaneously. Those patterns can be used as secure keys in PUFs and authentication can be performed by optical scanning.

A kinetic Monte Carlo (KMC) model is developed to simulate the ion transportation in SE under electric field. The simulation results matched experimental data well that validated the ion hopping model.
ContributorsYu, Weijie (Author) / Kozicki, Michael N (Thesis advisor) / Barnaby, Hugh (Thesis advisor) / Diaz, Rodolfo (Committee member) / Goryll, Michael (Committee member) / Arizona State University (Publisher)
Created2015
155922-Thumbnail Image.png
Description
Total dose sensing systems (or radiation detection systems) have many applications,

ranging from survey monitors used to supervise the generated radioactive waste at

nuclear power plants to personal dosimeters which measure the radiation dose

accumulated in individuals. This dissertation work will present two different types of

novel devices developed at Arizona State University for

Total dose sensing systems (or radiation detection systems) have many applications,

ranging from survey monitors used to supervise the generated radioactive waste at

nuclear power plants to personal dosimeters which measure the radiation dose

accumulated in individuals. This dissertation work will present two different types of

novel devices developed at Arizona State University for total dose sensing applications.

The first detector technology is a mechanically flexible metal-chalcogenide glass (ChG)

based system which is fabricated on low cost substrates and are intended as disposable

total dose sensors. Compared to existing commercial technologies, these thin film

radiation sensors are simpler in form and function, and cheaper to produce and operate.

The sensors measure dose through resistance change and are suitable for applications

such as reactor dosimetry, radiation chemistry, and clinical dosimetry. They are ideal for

wearable devices due to the lightweight construction, inherent robustness to resist

breaking when mechanically stressed, and ability to attach to non-flat objects. Moreover,

their performance can be easily controlled by tuning design variables and changing

incorporated materials. The second detector technology is a wireless dosimeter intended

for remote total dose sensing. They are based on a capacitively loaded folded patch

antenna resonating in the range of 3 GHz to 8 GHz for which the load capacitance varies

as a function of total dose. The dosimeter does not need power to operate thus enabling

its use and implementation in the field without requiring a battery for its read-out. As a

result, the dosimeter is suitable for applications such as unattended detection systems

destined for covert monitoring of merchandise crossing borders, where nuclear material

tracking is a concern. The sensitive element can be any device exhibiting a known

variation of capacitance with total ionizing dose. The sensitivity of the dosimeter is

related to the capacitance variation of the radiation sensitive device as well as the high

frequency system used for reading. Both technologies come with the advantage that they

are easy to manufacture with reasonably low cost and sensing can be readily read-out.
ContributorsMahmud, Adnan, Ph.D (Author) / Barnaby, Hugh J. (Thesis advisor) / Kozicki, Michael N (Committee member) / Gonzalez-Velo, Yago (Committee member) / Goryll, Michael (Committee member) / Alford, Terry (Committee member) / Arizona State University (Publisher)
Created2017
156179-Thumbnail Image.png
Description
High-k dielectrics have been employed in the metal-oxide semiconductor field effect transistors (MOSFETs) since 45 nm technology node. In this MOSFET industry, Moore’s law projects the feature size of MOSFET scales half within every 18 months. Such scaling down theory has not only led to the physical limit of manufacturing

High-k dielectrics have been employed in the metal-oxide semiconductor field effect transistors (MOSFETs) since 45 nm technology node. In this MOSFET industry, Moore’s law projects the feature size of MOSFET scales half within every 18 months. Such scaling down theory has not only led to the physical limit of manufacturing but also raised the reliability issues in MOSFETs. After the incorporation of HfO2 based high-k dielectrics, the stacked oxides based gate insulator is facing rather challenging reliability issues due to the vulnerable HfO2 layer, ultra-thin interfacial SiO2 layer, and even messy interface between SiO2 and HfO2. Bias temperature instabilities (BTI), hot channel electrons injections (HCI), stress-induced leakage current (SILC), and time dependent dielectric breakdown (TDDB) are the four most prominent reliability challenges impacting the lifetime of the chips under use.

In order to fully understand the origins that could potentially challenge the reliability of the MOSFETs the defects induced aging and breakdown of the high-k dielectrics have been profoundly investigated here. BTI aging has been investigated to be related to charging effects from the bulk oxide traps and generations of Si-H bonds related interface traps. CVS and RVS induced dielectric breakdown studies have been performed and investigated. The breakdown process is regarded to be related to oxygen vacancies generations triggered by hot hole injections from anode. Post breakdown conduction study in the RRAM devices have shown irreversible characteristics of the dielectrics, although the resistance could be switched into high resistance state.
ContributorsFang, Runchen (Author) / Barnaby, Hugh J (Thesis advisor) / Kozicki, Michael N (Thesis advisor) / Vasileska, Dragica (Committee member) / Thornton, Trevor J (Committee member) / Arizona State University (Publisher)
Created2018
156474-Thumbnail Image.png
Description
In this work, an advanced simulation study of reliability in millimeter-wave (mm-wave) GaN Devices for power amplifier (PA) applications is performed by means of a particle-based full band Cellular Monte Carlo device simulator (CMC). The goal of the study is to obtain a systematic characterization of the performance of GaN

In this work, an advanced simulation study of reliability in millimeter-wave (mm-wave) GaN Devices for power amplifier (PA) applications is performed by means of a particle-based full band Cellular Monte Carlo device simulator (CMC). The goal of the study is to obtain a systematic characterization of the performance of GaN devices operating in DC, small signal AC and large-signal radio-frequency (RF) conditions emphasizing on the microscopic properties that correlate to degradation of device performance such as generation of hot carriers, presence of material defects and self-heating effects. First, a review of concepts concerning GaN technology, devices, reliability mechanisms and PA design is presented in chapter 2. Then, in chapter 3 a study of non-idealities of AlGaN/GaN heterojunction diodes is performed, demonstrating that mole fraction variations and the presence of unintentional Schottky contacts are the main limiting factor for high current drive of the devices under study. Chapter 4 consists in a study of hot electron generation in GaN HEMTs, in terms of the accurate simulation of the electron energy distribution function (EDF) obtained under DC and RF operation, taking into account frequency and temperature variations. The calculated EDFs suggest that Class AB PAs operating at low frequency (10 GHz) are more robust to hot carrier effects than when operating under DC or high frequency RF (up to 40 GHz). Also, operation under Class A yields higher EDFs than Class AB indicating lower reliability. This study is followed in chapter 5 by the proposal of a novel π-Shaped gate contact for GaN HEMTs which effectively reduces the hot electron generation while preserving device performance. Finally, in chapter 6 the electro-thermal characterization of GaN-on-Si HEMTs is performed by means of an expanded CMC framework, where charge and heat transport are self-consistently coupled. After the electro-thermal model is validated to experimental data, the assessment of self-heating under lateral scaling is considered.
ContributorsLatorre Rey, Alvaro Daniel (Author) / Saraniti, Marco (Thesis advisor) / Kitchen, Jennifer (Committee member) / Goodnick, Stephen M (Committee member) / Thornton, Trevor (Committee member) / Arizona State University (Publisher)
Created2018
156908-Thumbnail Image.png
Description
This work investigates the effects of ionizing radiation and displacement damage on the retention of state, DC programming, and neuromorphic pulsed programming of Ag-Ge30Se70 conductive bridging random access memory (CBRAM) devices. The results show that CBRAM devices are susceptible to both environments. An observable degradation in electrical response due to

This work investigates the effects of ionizing radiation and displacement damage on the retention of state, DC programming, and neuromorphic pulsed programming of Ag-Ge30Se70 conductive bridging random access memory (CBRAM) devices. The results show that CBRAM devices are susceptible to both environments. An observable degradation in electrical response due to total ionizing dose (TID) is shown during neuromorphic pulsed programming at TID below 1 Mrad using Cobalt-60. DC cycling in a 14 MeV neutron environment showed a collapse of the high resistance state (HRS) and low resistance state (LRS) programming window after a fluence of 4.9x10^{12} n/cm^2, demonstrating the CBRAM can fail in a displacement damage environment. Heavy ion exposure during retention testing and DC cycling, showed that failures to programming occurred at approximately the same threshold, indicating that the failure mechanism for the two types of tests may be the same. The dose received due to ionizing electronic interactions and non-ionizing kinetic interactions, was calculated for each ion species at the fluence of failure. TID values appear to be the most correlated, indicating that TID effects may be the dominate failure mechanism in a combined environment, though it is currently unclear as to how the displacement damage also contributes to the response. An analysis of material effects due to TID has indicated that radiation damage can limit the migration of Ag+ ions. The reduction in ion current density can explain several of the effects observed in CBRAM while in the LRS.
ContributorsTaggart, Jennifer L (Author) / Barnaby, Hugh J (Thesis advisor) / Kozicki, Michael N (Committee member) / Holbert, Keith E. (Committee member) / Yu, Shimeng (Committee member) / Arizona State University (Publisher)
Created2018
136385-Thumbnail Image.png
Description
The Metal Semiconductor Field Effect Transistor (MESFET) has high potential to enter analog and RF applications due to their high breakdown voltage and switching frequency characteristics. These MESFET devices could allow for high voltage analog circuits to be integrated with low voltage digital circuits on a single chip in an

The Metal Semiconductor Field Effect Transistor (MESFET) has high potential to enter analog and RF applications due to their high breakdown voltage and switching frequency characteristics. These MESFET devices could allow for high voltage analog circuits to be integrated with low voltage digital circuits on a single chip in an extremely cost effective way. Higher integration leads to electronics with increased functionality and a smaller finished product. The MESFETs are designed in-house by the research group led by Dr. Trevor Thornton. The layouts are then sent to multi-project wafer (MPW) integrated circuit foundry companies, such as the Metal Oxide Semiconductor Implementation Service (MOSIS) to be fabricated. Once returned, the electrical characteristics of the devices are measured. The MESFET has been implemented in various applications by the research group, including the low dropout linear regulator (LDO) and RF power amplifier. An advantage of the MESFET is that it can function in extreme environments such as space, allowing for complex electrical systems to continue functioning properly where traditional transistors would fail.
ContributorsKam, Jason (Author) / Thornton, Trevor (Thesis director) / Goryll, Michael (Committee member) / Barrett, The Honors College (Contributor) / Electrical Engineering Program (Contributor)
Created2015-05
137186-Thumbnail Image.png
Description
MESFETs are used in high frequency applications and are typically made from GaAs. Dr. Trevor Thornton designed a silicon-on-insulator MESFET \u2014 a cheaper alternative with competitive capabilities. This paper concerns the characterization and modeling of this device to exhibit its marketability as a CMOS integrated transistor. Overviews of the MESFET's

MESFETs are used in high frequency applications and are typically made from GaAs. Dr. Trevor Thornton designed a silicon-on-insulator MESFET \u2014 a cheaper alternative with competitive capabilities. This paper concerns the characterization and modeling of this device to exhibit its marketability as a CMOS integrated transistor. Overviews of the MESFET's history and DLTS (deep level transient spectroscopy) are offered.
ContributorsTerrell, Catherine Elaine (Author) / Thornton, Trevor (Thesis director) / Young, Alexander (Committee member) / Barrett, The Honors College (Contributor) / Electrical Engineering Program (Contributor)
Created2014-05
153773-Thumbnail Image.png
Description
Engineered nanoporous substrates made using materials such as silicon nitride or silica have been demonstrated to work as particle counters or as hosts for nano-lipid bilayer membrane formation. These mechanically fabricated porous structures have thicknesses of several hundred nanometers up to several micrometers to ensure mechanical stability of the membrane.

Engineered nanoporous substrates made using materials such as silicon nitride or silica have been demonstrated to work as particle counters or as hosts for nano-lipid bilayer membrane formation. These mechanically fabricated porous structures have thicknesses of several hundred nanometers up to several micrometers to ensure mechanical stability of the membrane. However, it is desirable to have a three-dimensional structure to ensure increased mechanical stability. In this study, circular silica shells used from Coscinodiscus wailesii, a species of diatoms (unicellular marine algae) were immobilized on a silicon chip with a micrometer-sized aperture using a UV curable polyurethane adhesive. The current conducted by a single nanopore of 40 nm diameter and 50 nm length, during the translocation of a 27 nm polystyrene sphere was simulated using COMSOL multiphysics and tested experimentally. The current conducted by a single 40 nm diameter nanopore of the diatom shell during the translocation of a 27 nm polystyrene sphere was simulated using COMSOL Multiphysics (28.36 pA) and was compared to the experimental measurement (28.69 pA) and Coulter Counting theory (29.95 pA).In addition, a mobility of 1.11 x 10-8 m2s-1V-1 for the 27 nm polystyrene spheres was used to convert the simulated current from spatial dependence to time dependence.

To achieve a sensing diameter of 1-2 nanometers, the diatom shells were used as substrates to perform ion-channel reconstitution experiments. The immobilized diatom shell was functionalized using silane chemistry and lipid bilayer membranes were formed. Functionalization of the diatom shell surface improves bilayer formation probability from 1 out of 10 to 10 out of 10 as monitored by impedance spectroscopy. Self-insertion of outer membrane protein OmpF of E.Coli into the lipid membranes could be confirmed using single channel recordings, indicating that nano-BLMs had formed which allow for fully functional porin activity. The results indicate that biogenic silica nanoporous substrates can be simulated using a simplified two dimensional geometry to predict the current when a nanoparticle translocates through a single aperture. With their tiered three-dimensional structure, diatom shells can be used in to form nano-lipid bilayer membranes and can be used in ion-channel reconstitution experiments similar to synthetic nanoporous membranes.
ContributorsRamakrishnan, Shankar (Author) / Goryll, Michael (Thesis advisor) / Blain Christen, Jennifer (Committee member) / Dey, Sandwip (Committee member) / Thornton, Trevor (Committee member) / Arizona State University (Publisher)
Created2015
154294-Thumbnail Image.png
Description
In this work, the insight provided by our sophisticated Full Band Monte Carlo simulator is used to analyze the behavior of state-of-art devices like GaN High Electron Mobility Transistors and Hot Electron Transistors. Chapter 1 is dedicated to the description of the simulation tool used to obtain the results shown

In this work, the insight provided by our sophisticated Full Band Monte Carlo simulator is used to analyze the behavior of state-of-art devices like GaN High Electron Mobility Transistors and Hot Electron Transistors. Chapter 1 is dedicated to the description of the simulation tool used to obtain the results shown in this work. Moreover, a separate section is dedicated the set up of a procedure to validate to the tunneling algorithm recently implemented in the simulator. Chapter 2 introduces High Electron Mobility Transistors (HEMTs), state-of-art devices characterized by highly non linear transport phenomena that require the use of advanced simulation methods. The techniques for device modeling are described applied to a recent GaN-HEMT, and they are validated with experimental measurements. The main techniques characterization techniques are also described, including the original contribution provided by this work. Chapter 3 focuses on a popular technique to enhance HEMTs performance: the down-scaling of the device dimensions. In particular, this chapter is dedicated to lateral scaling and the calculation of a limiting cutoff frequency for a device of vanishing length. Finally, Chapter 4 and Chapter 5 describe the modeling of Hot Electron Transistors (HETs). The simulation approach is validated by matching the current characteristics with the experimental one before variations of the layouts are proposed to increase the current gain to values suitable for amplification. The frequency response of these layouts is calculated, and modeled by a small signal circuit. For this purpose, a method to directly calculate the capacitance is developed which provides a graphical picture of the capacitative phenomena that limit the frequency response in devices. In Chapter 5 the properties of the hot electrons are investigated for different injection energies, which are obtained by changing the layout of the emitter barrier. Moreover, the large signal characterization of the HET is shown for different layouts, where the collector barrier was scaled.
ContributorsSoligo, Riccardo (Author) / Saraniti, Marco (Thesis advisor) / Goodnick, Stephen M (Committee member) / Chowdhury, Srabanti (Committee member) / Thornton, Trevor (Committee member) / Arizona State University (Publisher)
Created2016