Matching Items (14)
149147-Thumbnail Image.png
Description

An Adaptive Environmental Assessment and Management workshop process was used to assist Grand Canyon scientists and managers in developing conceptual and simulation models for the Colorado ecosystem affected by Glen Canyon Dam. This model examines ecosystem variables and processes at multiple scales in space and time, ranging from feet and

An Adaptive Environmental Assessment and Management workshop process was used to assist Grand Canyon scientists and managers in developing conceptual and simulation models for the Colorado ecosystem affected by Glen Canyon Dam. This model examines ecosystem variables and processes at multiple scales in space and time, ranging from feet and hours for benthic algal response to diurnal flow changes, to reaches and decades for sediment storage and dynamics of long-lived native fish species. Its aim is to help screen policy options ranging from changes in hourly variation in flow allowed from Glen Canyon Dam, to major structural changes for restoration of more natural temperature regimes. It appears that we can make fairly accurate predictions about some components of ecosystem response to policy change (e.g., autochthonous primary production, insect communities, riparian vegetation, rainbow trout population), but we are moderately or grossly uncertain about others (e.g., long-term sediment storage, response of native and non-native fishes to physical habitat restoration). Further, we do not believe that existing monitoring programs are adequate to detect responses of native fishes or vegetation to anything short of gross habitat changes. Some experimental manipulations (such as controlled floods for beach/habitat- building) should proceed, but most should await development of better monitoring programs and sound temporal baseline information from those programs.

ContributorsWalters, Carl (Author) / Stevens, Lawrence E. (Author) / Gold, Barry (Author) / Korman, Josh (Author)
Created2000-12
149110-Thumbnail Image.png
Description

While the ecology and evolution of partial migratory systems (defined broadly to include skip spawning) have been well studied, we are only beginning to under- stand how partial migratory populations are responding to ongoing environmen- tal change. Environmental change can lead to differences in the fitness of residents and migrants,

While the ecology and evolution of partial migratory systems (defined broadly to include skip spawning) have been well studied, we are only beginning to under- stand how partial migratory populations are responding to ongoing environmen- tal change. Environmental change can lead to differences in the fitness of residents and migrants, which could eventually lead to changes in the frequency of the strategies in the overall population. Here, we address questions concerning the life history of the endangered Gila cypha (humpback chub) in the regulated Colorado River and the unregulated tributary and primary spawning area, the Little Colorado River. We develop eight multistate models for the population based on three movement hypotheses, in which states are defined in terms of fish size classes and river locations. We fit these models to mark–recapture data col- lected in 2009–2012. We compare survival and growth estimates between the Col- orado River and Little Colorado River and calculate abundances for all size classes. The best model supports the hypotheses that larger adults spawn more frequently than smaller adults, that there are residents in the spawning grounds, and that juveniles move out of the Little Colorado River in large numbers during the monsoon season (July–September). Monthly survival rates for G. cypha in the Colorado River are higher than in the Little Colorado River in all size classes; however, growth is slower. While the hypothetical life histories of life-long resi- dents in the Little Colorado River and partial migrants spending most of its time in the Colorado River are very different, they lead to roughly similar fitness expectations when we used expected number of spawns as a proxy. However, more research is needed because our study period covers a period of years when conditions in the Colorado River for G. cypha are likely to have been better than has been typical over the last few decades.

ContributorsYackulic, Charles B. (Author) / Yard, Michael D. (Author) / Korman, Josh (Author) / Van Haverbeke, David R. (Author)
Created2014-01-16
149111-Thumbnail Image.png
Description

ABSTRACT: The Colorado River below Glen Canyon Dam, Arizona, is part of an adaptive management programme which optimizes dam operations to improve various resources in the downstream ecosystem within Grand Canyon. Understanding how populations of federally endangered humpback chub Gila cypha respond to these dam operations is a high priority.

ABSTRACT: The Colorado River below Glen Canyon Dam, Arizona, is part of an adaptive management programme which optimizes dam operations to improve various resources in the downstream ecosystem within Grand Canyon. Understanding how populations of federally endangered humpback chub Gila cypha respond to these dam operations is a high priority. Here, we test hypotheses concerning temporal variation in juvenile humpback chub apparent survival rates and abundance by comparing estimates between hydropeaking and steady discharge regimes over a 3-year period (July 2009–July 2012). The most supported model ignored flow type (steady vs hydropeaking) and estimated a declining trend in daily apparent survival rate across years (99.90%, 99.79% and 99.67% for 2009, 2010 and 2011, respectively). Corresponding abundance of juvenile humpback chub increased temporally; open population model estimates ranged from 615 to 2802 individuals/km, and closed model estimates ranged from 94 to 1515 individuals/km. These changes in apparent survival and abundance may reflect broader trends, or simply represent inter-annual variation. Important findings include (i) juvenile humpback chub are currently surviving and recruiting in the mainstem Colorado River with increasing abundance; (ii) apparent survival does not benefit from steady fall discharges from Glen Canyon Dam; and (iii) direct assessment of demographic parameters for juvenile endangered fish are possible and can rapidly inform management actions in regulated rivers.

ContributorsFinch, Colton G. (Author) / Pine, William E. (Author) / Yackulic, Charles B. (Author) / Dodrill, Michael J. (Author) / Yard, Michael (Author) / Gerig, Brandon (Author) / Coggins, Lewis G. (Author) / Korman, Josh (Author)
Created2015-02-10
149134-Thumbnail Image.png
Description

It is apparent that before emplacement of the dam gully degradation in terraces was restored by periodic alluvial deposition from river floods, but perhaps even more important is the redistribution of flood sands onto higher terraces by wind. Thus, we propose the term "restorative base-level hypothesis" to emphasize the dynamic

It is apparent that before emplacement of the dam gully degradation in terraces was restored by periodic alluvial deposition from river floods, but perhaps even more important is the redistribution of flood sands onto higher terraces by wind. Thus, we propose the term "restorative base-level hypothesis" to emphasize the dynamic equilibrium between gully erosion and renewed deposition, a process that remains active in Cataract Canyon but is disrupted in Grand Canyon by the presence and operation of the dam.

We developed type geomorphic settings to develop a conceptual process model for the diverse small-catchment geomorphic system in Grand Canyon. Research findings explain how streams are able to cross broad, flat terraces given a rainfall event and how they become progressively more integrated with the river. The primary channelization processes are ponding and overflow, alluvial fan progradation, and infiltration and piping, all of which contribute to nickpoint migration. An understanding of these processes was essential to building the geomorphic model.

The predictive mathematical model quantifies erosional vulnerability by applying a hypothetical rainfall event of 25 mm/hour onto a catchment above a "pristine" terrace sequence. The principal driving factor for erosion is basin area. The principal resisting factor for erosion is terrace diffusion capacity, which is a function of terrace sand cross-sectional area and infiltration capacity. Several important modifying factors are applied to the basic model to determine relative vulnerability of each terrace to gully erosion. Vulnerability of the top terrace at each catchment is plotted against the measured amount of gully erosion in that terrace, providing a base line against which progressive changes in gully depth can be easily monitored in the future.

Field studies and research show that: (1) gully erosion of terraces has been severe during the past 20 years in Grand Canyon due to unusually high precipitation; and (2) sediment deprivation coupled with the lack of large annual floods has caused a reduction in restorative (depositional) factors. Continued measurement and documentation of geomorphic processes in catchments, particularly at type geomorphic settings, will further refine and verify the predictability of the model. We conclude that beach-habitat-building flows are essential for initiating natural restorative processes and that one of the most important processes in gully mitigation may be eolian reworking of newly deposited flood sands onto higher terraces. Prior to the construction of Glen Canyon Dam, gully-deepening and river/wind depositional processes were in dynamic equilibrium, allowing the preservation of ancient cultural sites for the past several thousand years.

ContributorsThompson, Kate S. (Editor) / Potochnik, Andre R. (Editor)
Created2000-02-18
149140-Thumbnail Image.png
Description

With a focus on resources of the Colorado River ecosystem below Glen Canyon Dam, the Glen Canyon Dam Adaptive Management Program has included a variety of experimental policy tests, ranging from manipulation of water releases from the dam to removal of non-native fish within Grand Canyon National Park. None of

With a focus on resources of the Colorado River ecosystem below Glen Canyon Dam, the Glen Canyon Dam Adaptive Management Program has included a variety of experimental policy tests, ranging from manipulation of water releases from the dam to removal of non-native fish within Grand Canyon National Park. None of these field-scale experiments has yet produced unambiguous results in terms of management prescriptions. But there has been adaptive learning, mostly from unanticipated or surprising resource responses relative to predictions from ecosystem modeling. Surprise learning opportunities may often be viewed with dismay by some stakeholders who might not be clear about the purpose of science and modeling in adaptive management. However, the experimental results from the Glen Canyon Dam program actually represent scientific successes in terms of revealing new opportunities for developing better river management policies. A new long-term experimental management planning process for Glen Canyon Dam operations, started in 2011 by the U.S. Department of the Interior, provides an opportunity to refocus management objectives, identify and evaluate key uncertainties about the influence of dam releases, and refine monitoring for learning over the next several decades. Adaptive learning since 1995 is critical input to this long-term planning effort. Embracing uncertainty and surprise outcomes revealed by monitoring and ecosystem modeling will likely continue the advancement of resource objectives below the dam, and may also promote efficient learning in other complex programs.

ContributorsMelis, Theodore S. (Author) / Walters, Carl (Author) / Korman, Josh (Author)
Created2015
ContributorsBarrett, Cliff (Interviewee) / Hirt, Paul (Transcriber, Interviewer, Editor) / Sweeney, Jennifer (Transcriber, Interviewer, Editor) / MacFadyen, Joshua (Interviewer)
Created2017-05-15
Description
The history of agricultural industrialization, a complex transition with global and local drivers and effects, is enhanced when local participants in the transition--farm households--contribute to the narrative. This thesis presents an in-depth case study of the household-level motivations and ecological impacts of agriculture during industrialization in Prince Edward Island (PEI),

The history of agricultural industrialization, a complex transition with global and local drivers and effects, is enhanced when local participants in the transition--farm households--contribute to the narrative. This thesis presents an in-depth case study of the household-level motivations and ecological impacts of agriculture during industrialization in Prince Edward Island (PEI), Canada, c. 1960s-present. After a review of the theoretical frameworks for agricultural change studies, the historical context of PEI’s agricultural industrialization and the province-wide ecological effects are analyzed by interpreting historical, scientific, and grey literature. Then, a discussion of farm households’ role in connecting large-scale (often exogenous) factors with small-scale factors provides the background to the novel study, “The Back 50 Project”. Using a public participatory historical GIS (PPHGIS) online survey, this study invited PEI’s agricultural community to use historical maps to describe the agricultural land use change (ALUC) they have engaged in and observed since the start of industrialization. This study found that the strongest motivations for ALUC were proximate causes—namely, households’ resources and goals—rather than high-level historical drivers. The reported agroecological effects tended to concern on-farm ecosystems more than off-farm ecosystems, and they ranged in their harm or benefit, with harmful impacts following the historical contexts. Finally, the synthesis of these historical and ecological contexts with this household-level study aims to create a holistic narrative of PEI’s agricultural change over the past fifty years and provide recommendations for PEI’s future sustainable agricultural development.
ContributorsNeumann, Alexandra (Author) / Shrestha, Milan (Thesis director) / MacFadyen, Joshua (Committee member) / School of Life Sciences (Contributor) / School of Sustainability (Contributor) / Barrett, The Honors College (Contributor)
Created2020-12
Description
Feed Your Senses is an illustrated book made to holistically communicate links between local food systems and cultural wellbeing. Food was the center of my household growing up; my mom’s love of food, cooking, and experimenting with flavors molded my palette from a young age. As I got older, I

Feed Your Senses is an illustrated book made to holistically communicate links between local food systems and cultural wellbeing. Food was the center of my household growing up; my mom’s love of food, cooking, and experimenting with flavors molded my palette from a young age. As I got older, I realized that everyone has a deeply personal relationship with their food - no matter what their upbringing. My developing interests in food took off when I started traveling and experiencing the uniqueness and vibrancy of food culture. Food became the object of every trip I took.

The summer after my Junior year, I studied abroad in Denmark and was given the opportunity to create my own research topic. My interest in Sustainability has always revolved around food, so I started thinking about ways that I could incorporate this interest with the geographical backdrop of Århus, Denmark. Food is a medium for so many uniquely human creations: celebrations, art, connection, and taste. Food is also a big driver of climate change, as the meat and agriculture industries account for more than half of all greenhouse gas emissions. However, I wanted to research more than food. I wanted to incorporate balance; a balance of local and global food systems, a balance of individual and community relationships, and a balance of science and art. I wanted to show how food is a driving force in achieving global sustainability and resilience.

After much contemplation, I began researching the connections between local food and community wellbeing in the city. I interviewed farm-to-table chefs, local farmers, farmer’s market vendors, street food vendors, and consumers on their relationships with food. The topic itself was flexible and open-ended enough so that each interviewee could relate it to their lives in a unique way. I loved the research so much that I decided to continue interviewing stakeholders in the Phoenix metropolitan area. Through the continuation of my research in Arizona, I was able to include a comparative element that offered a better perspective on the matter. I found that the history of the country itself has a significant influence on people’s mindsets and actions surrounding food and the environment. The common theme I heard from all interviewees, however, was their confidence in the power of food to unite people to one another and to the natural world.

I chose to create this illustrated book because my research experience was a whole and inseparable experience; it could never be fully expressed in words. I wanted my project to be an intellectual and visual map of my journey, inspiring the reader to go on a journey of their own. Therefore, I partnered with an undergraduate art student at Arizona State University, Sofia Reyes, to help create my vision. I shared my experiences, photos, and stories with her so that she could create the beautiful watercolor paintings that make the book so visually appealing and accessible to all demographics. The images act as a way of engaging all of our human senses, initiating a stronger connection to the material presented.

Creating this project was my favorite experience as an undergraduate, and I feel fortunate to be able to tell the stories of those intimately tied to the local food system. I am in the process of entering my book in various competitions including Writer’s Digest, Reader’s Favorites, The Food Sustainability Media Award, and The Indie Book Awards. I am also going on to publish the book through a small publishing company.
ContributorsSykes, Chloe (Author) / Cloutier, Scott (Thesis director) / MacFadyen, Joshua (Committee member) / School of Sustainability (Contributor) / School of Public Affairs (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
133202-Thumbnail Image.png
Description
The Centers for Disease Control and Prevention in the United States announced that there has been roughly a 50% increase in the prevalence of food allergies among people between the years of 1997 - 2011. A food allergy can be described as a medical condition where being exposed to a

The Centers for Disease Control and Prevention in the United States announced that there has been roughly a 50% increase in the prevalence of food allergies among people between the years of 1997 - 2011. A food allergy can be described as a medical condition where being exposed to a certain food triggers a harmful immune response in the body, known as an allergic reaction. These reactions can range from mild to fatal, and they are caused mainly by the top 8 major food allergens: dairy, eggs, peanuts, tree nuts, wheat, soy, fish, and shellfish. Food allergies mainly plague children under the age of 3, as some of them will grow out of their allergy sensitivity over time, and most people develop their allergies at a young age, and not when they are older. The rise in prevalence is becoming a frightening problem around the world, and there are emerging theories that are attempting to ascribe a cause. There are three well-known hypotheses that will be discussed: the Hygiene Hypothesis, the Dual-Allergen Exposure Hypothesis, and the Vitamin-D Deficiency Hypothesis. Beyond that, this report proposes that a new hypothesis be studied, the Food Systems Hypothesis. This hypothesis theorizes that the cause of the rise of food allergies is actually caused by changes in the food itself and particularly the pesticides that are used to cultivate it.
ContributorsCromer, Kelly (Author) / Lee, Rebecca (Thesis director) / MacFadyen, Joshua (Committee member) / Sanford School of Social and Family Dynamics (Contributor) / Dean, W.P. Carey School of Business (Contributor) / Barrett, The Honors College (Contributor)
Created2018-12
Description
What effect do the Non-Message Labeling Factors (Color, Font, Prominence, and Placement) and Customer Belief Frameworks (Institutional Trust, Eco-Label Framework, and Information Source) have on customers' Willingness to Pay (WTP) for non-GMO Products? The topic of this study is consumer behavior, placed in the context of food history and trends

What effect do the Non-Message Labeling Factors (Color, Font, Prominence, and Placement) and Customer Belief Frameworks (Institutional Trust, Eco-Label Framework, and Information Source) have on customers' Willingness to Pay (WTP) for non-GMO Products? The topic of this study is consumer behavior, placed in the context of food history and trends in the United States. This paper also offers a set of best practices for people pursuing a non-GMO product labeling strategy. The method involved an online survey of 217 Arizona State University students who were offered extra credit in their classes in exchange for participation (Appendix 1). The qualitative survey asked participants to measure and explain their preferences for certain non-message labeling factors (color, font, size). Participants also gave information about the Customer Belief Frameworks they use when making purchasing decisions, which consist of ideas and beliefs that are independent of the packaging. The results of the survey led me to create a set of recommended guidelines when designing packaging for a non-GMO product. The survey also gathered qualitative data about Information Source, Biospheric Values, and Institutional Trust. The Review of Literature explains how these Customer Belief Frameworks were previously used in packaging studies to explore external factors that also influence the purchase decision. Given the results of the exploratory survey, I recommend employing the following attributes in non-GMO labeling to maximize profits: utilize labels with green color, wide and light san-serif fonts and in a circular shape. Managers pursuing this strategy should use the verbiage "Non-GMO Verified" rather than simply "Non-GMO", or including the words "Process" and "Project" which can add to consumers' confusion. For added fluency, use medium size and centralized size of the label on the packaging, close in proximity to the brand name. In addition, the Eco-Label Framework findings suggest including messages which appeal to altruistic values can also be beneficial, as participants were mostly concerned with altruistic values (children, family) when talking about genetic modification, climate change and natural disasters.
ContributorsBertch, Madeleine Michelle (Author) / Eaton, Kathryn (Thesis director) / MacFadyen, Joshua (Committee member) / Department of Marketing (Contributor) / Department of Information Systems (Contributor) / Barrett, The Honors College (Contributor)
Created2016-12