Matching Items (218)
133639-Thumbnail Image.png
Description
Current technology does not allow for the full amount of power produced by solar arrays (PV) on spacecraft to be utilized. The arrays are designed with non-reconfigurable architectures and sent on fifteen to twenty year long missions. They cannot be changed once they are in space, so the arrays are

Current technology does not allow for the full amount of power produced by solar arrays (PV) on spacecraft to be utilized. The arrays are designed with non-reconfigurable architectures and sent on fifteen to twenty year long missions. They cannot be changed once they are in space, so the arrays are designed for the end of life. Throughout their lifetime, solar arrays can degrade in power producing capabilities anywhere from 20% to 50%. Because there is such a drastic difference in the beginning and end of life power production, and because they cannot be reconfigured, a new design has been found necessary in order to increase power production. Reconfiguration allows the solar arrays to achieve maximum power producing capabilities at both the beginning and end of their lives. With the potential to increase power production by 50%, the reconfiguration design consists of a switching network to be able to utilize any combination of cells. The design for reconfiguration must meet the power requirements of the solar array. This thesis will explore different designs for reconfiguration, as well as possible switches for implementation. It will also review other methods to increase power production, as well as discuss future work in this field.
ContributorsJohnson, Everett Hope (Author) / Kitchen, Jennifer (Thesis director) / Ozev, Sule (Committee member) / School of International Letters and Cultures (Contributor) / Electrical Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
133576-Thumbnail Image.png
Description
Consumers purchase point-of-use (POU) devices to further improve the quality of water provided by the tap. As awareness increases of harmful contaminants, an emerging market of advanced POU with claims of removing beyond what a typical activated carbon filter is capable of, such as heavy metals. This research compares four

Consumers purchase point-of-use (POU) devices to further improve the quality of water provided by the tap. As awareness increases of harmful contaminants, an emerging market of advanced POU with claims of removing beyond what a typical activated carbon filter is capable of, such as heavy metals. This research compares four commercially available pitcher filters; two that claim to remove arsenic and hexavalent chromium and two without such claims. Arsenate (As (V)) and hexavalent chromium (Cr (VI)) co-occur in natural geologic formations and are known to have harmful effects on humans when ingested. Pitcher filters Epic Water Filter and Aquagear had claims of removing both As (V) and Cr (VI) up to 99% with a capacity of nearly 200 gallons. In contrast, pitcher filters Brita and Pur had no claims for removal of As(V) and Cr(VI) with a 40-gallon lifespan. A series of experiments were conducted to first determine the efficiency of each filter, then to add the ability or improve removal of As(V) and Cr(VI) in one filter for future design implementations. Experiment 1 was conducted by treating 100 gallons of spiked tap water (50 ppb for As (V) and 100 ppb for Cr (VI)) with each filter. All four pitcher filters showed low performance, resulting in Pur with the lowest removal percentage of 2% and Aquagear with the highest percentage 16% for As (V). For Cr (VI) Pur performed the worst with a removal of 5% and Brita had the best performance of 15%. The functionality of Brita was improved by embedding a selective ion exchange media, which when nanotized successfully removed Cr (VI) in previous studies. The optimal mass of resin to add to the pitcher was experimentally determined as 18.9 grams through Experiment 2. Finally, Experiment 3 compared an alternative placement of the resin material using the same 18.9 grams. The performance in Experiment 3 was significantly worse than Experiment 2. The final recommendation for future design implementation was to add 18.9 grams of SIR-700 resin below the filter media for optimum performance. Overall, the results demonstrate the limited removal of As(V) and Cr(VI) by the four commercial pitcher filters and show that by adding selective ion exchange media, the POUs can be nano-enabled to effectively remove As(V) and Cr(VI) from water.
ContributorsDietrich, Lisa Keri (Author) / Westerhoff, Paul (Thesis director) / Perreault, Francois (Committee member) / Civil, Environmental and Sustainable Engineering Program (Contributor) / School of Sustainability (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
134312-Thumbnail Image.png
Description
The Phoenix CubeSat is a 3U Earth imaging CubeSat which will take infrared (IR) photos of cities in the United Stated to study the Urban Heat Island Effect, (UHI) from low earth orbit (LEO). It has many different components that need to be powered during the life of its mission.

The Phoenix CubeSat is a 3U Earth imaging CubeSat which will take infrared (IR) photos of cities in the United Stated to study the Urban Heat Island Effect, (UHI) from low earth orbit (LEO). It has many different components that need to be powered during the life of its mission. The only power source during the mission will be its solar panels. It is difficult to calculate power generation from solar panels by hand because of the different orientations the satellite will be positioned in during orbit; therefore, simulation will be used to produce power generation data. Knowing how much power is generated is integral to balancing the power budget, confirming whether there is enough power for all the components, and knowing whether there will be enough power in the batteries during eclipse. This data will be used to create an optimal design for the Phoenix CubeSat to accomplish its mission.
ContributorsBarakat, Raymond John (Author) / White, Daniel (Thesis director) / Kitchen, Jennifer (Committee member) / Electrical Engineering Program (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2017-05
134177-Thumbnail Image.png
Description
Buck converters are a class of switched-mode power converters often used to step down DC input voltages to a lower DC output voltage. These converters naturally produce a current and voltage ripple at their output due to their switching action. Traditional methods of reducing this ripple have involved adding large

Buck converters are a class of switched-mode power converters often used to step down DC input voltages to a lower DC output voltage. These converters naturally produce a current and voltage ripple at their output due to their switching action. Traditional methods of reducing this ripple have involved adding large discrete inductors and capacitors to filter the ripple, but large discrete components cannot be integrated onto chips. As an alternative to using passive filtering components, this project investigates the use of active ripple cancellation to reduce the peak output ripple. Hysteretic controlled buck converters were chosen for their simplicity of design and fast transient response. The proposed cancellation circuits sense the output ripple of the buck converter and inject an equal ripple exactly out of phase with the sensed ripple. Both current-mode and voltage-mode feedback loops are simulated, and the effectiveness of each cancellation circuit is examined. Results show that integrated active ripple cancellation circuits offer a promising substitute for large discrete filters.
ContributorsWang, Ziyan (Author) / Bakkaloglu, Bertan (Thesis director) / Kitchen, Jennifer (Committee member) / Electrical Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2017-12
134611-Thumbnail Image.png
Description
This paper reviews several current designs of Cube Satellite (CubeSat) Electrical Power Systems (EPS) based on Silicon FET technologies and their current deficiencies, such as radiation-incurred defects and switching power losses. A strategy to fix these is proposed by the way of using Gallium Nitride (GaN) High Electron-Mobility Transistors (HEMTs)

This paper reviews several current designs of Cube Satellite (CubeSat) Electrical Power Systems (EPS) based on Silicon FET technologies and their current deficiencies, such as radiation-incurred defects and switching power losses. A strategy to fix these is proposed by the way of using Gallium Nitride (GaN) High Electron-Mobility Transistors (HEMTs) as switching devices within Buck/Boost Converters and other regulators. This work summarizes the EPS designs of several CubeSat missions, classifies them, and outlines their efficiency. An in-depth example of an EPS is also given, explaining the process in which these systems are designed. Areas of deficiency are explained along with reasoning as to why GaN can mitigate these losses, including its wide bandgap properties such as high RDS(on) and High Breakdown Voltage. Special design considerations must be kept in mind when using GaN HEMTs in this application and an example of a CubeSat using GaN HEMTs is mentioned. Finally, challenges ahead for GaN are explored including manufacturing considerations and long-term reliability.
ContributorsWilloughby, Alexander George (Author) / Kitchen, Jennifer (Thesis director) / Zhao, Yuji (Committee member) / Electrical Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2017-05
135382-Thumbnail Image.png
Description
In competitive Taekwondo, Electronic Body Protectors (EBPs) are used to register hits made by players during sparring. EBPs are comprised of three main components: chest guard, foot sock, and headgear. This equipment interacts with each other through the use of magnets, electric sensors, transmitters, and a receiver. The receiver is

In competitive Taekwondo, Electronic Body Protectors (EBPs) are used to register hits made by players during sparring. EBPs are comprised of three main components: chest guard, foot sock, and headgear. This equipment interacts with each other through the use of magnets, electric sensors, transmitters, and a receiver. The receiver is connected to a computer programmed with software to process signals from the transmitter and determine whether or not a competitor scored a point. The current design of EBPs, however, have numerous shortcomings, including sensing false positives, failing to register hits, costing too much, and relying on human judgment. This thesis will thoroughly delineate the operation of the current EBPs used and discuss research performed in order to eliminate these weaknesses.
ContributorsSpell, Valerie Anne (Author) / Kozicki, Michael (Thesis director) / Kitchen, Jennifer (Committee member) / Electrical Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
168684-Thumbnail Image.png
Description本文对中国制药企业并购溢价影响因素进行了研究,提出了对制药企业并购非常重要的两个新的影响因素:可生产药品批文和在研新药批文。本文以2011年1月—2019年12月间我国制药行业上市公司并购事件为样本,对在研新药和可生产药品批文的价值从四个维度度量:是否有在研新药和可生产药品批文;在研新药数量及可生产药品批文数量;根据创新药和仿制药两个类别进行细分;标的企业所拥有的在研新药和可生产药品批文的市场价值。论文发现药品批文对企业并购溢价的影响不是很显著。进一步的,本文探究了药品批文对主并企业的对被并购公司的估值的影响。实证结果表明,我国制药企业在并购估值时确实会考虑到在研新药和可生产药品批文的价值。本文还发现对于可生产药品来说,相对创新药,被并购公司持有的仿制药批文影响更显著。而对于在研新药来说,主并企业更看重在研的创新药,在研仿制药对并购估值的影响不大。最后,本文选取了两个代表性案例进一步分析和探讨药品批文对企业并购的影响。
ContributorsYe, Tao (Author) / Shen, Wei (Thesis advisor) / Chang, Chun (Thesis advisor) / Jiang, Zhan (Committee member) / Gu, Bin (Committee member) / Arizona State University (Publisher)
Created2022
168670-Thumbnail Image.png
Description汽车行业属于国家支柱型产业,创造了高额的产值,增加了就业岗位。随着汽车生产行业竞争日趋激烈的趋势影响,汽车经销商在未来会出现明显的分化,并且逐步向头部集中。基于这样的行业背景,本项研究开展汽车经销商整体经营和盈利能力等方面的详细深入分析,即系统整合汽车经销商业务运营层面和财务层面数据,结合统计研究方法,对经销商盈利能力进行系统且详实归因分析,从而试别驱动盈利能力的关键业务要素。其研究成果能够完善对行业发展规律和经营模式系统性理解,从而进一步指导该领域的相关业务实践,提高经销商整体经营业绩。本课题通过四个阶段来开展经销商整体经营与盈利归因的相关研究。首先,本课题梳理了中国汽车消费行业发展的历史,同时阐述样本期内(2018-2020年)国内宏观经济和汽车消费市场的特征进行,并介绍X品牌汽车经销商的地理分布、资质和业绩评级体系、自身经营特征以及汽车生产商对经销商扶持政策等方面。在第二阶段,本课题聚焦研究假设、模型与方法,通过对X品牌汽车经销商的业务结构和运营管理开展分析,并逐步识别影响经销商盈利的关键指标变量,并提出研究假设和相关模型(即时间序列模型和面板回归模型)。在第三阶段,本课题首先开展经销商相关信息整体性统计分析,获得关键业务指标在样本期内动态特征,并结合时间序列回归模型探讨各项业务指标对经销商整体盈利能力的影响程度。在第四阶段,本课题采用(个体)固定效应的面板回归模型来研究不同组别(控制)条件下经销商盈利能力的影响因素以及其盈利能力对这些因素的敏感程度,从而更深入和全面地揭示影响经销商盈利能力的潜在因素。 基于上述四阶段的研究结果,本研究进一步就提升经销商盈利能力展开讨论,并提出相应对策。本课题相关结论仅从X品牌汽车经销商经营和财务数据进行定性和定量分析获得,但衷心希望本研究的成果能够对汽车经销商改善经营业务方面能起到实践上的借鉴和指导意义。
ContributorsPan, Guangxiong (Author) / Shen, Wei (Thesis advisor) / Wu, Fei (Thesis advisor) / Zhu, Qigui (Committee member) / Arizona State University (Publisher)
Created2022
171571-Thumbnail Image.png
Description
N-nitrosodimethylamine (NDMA) is a probable human carcinogen that has been detected in various environments including the atmosphere, clouds, surface waters, and drinking water. NDMA can form through natural reactions in the aqueous phase of the atmosphere and it can form as a disinfection byproduct in water treatment. Due to its

N-nitrosodimethylamine (NDMA) is a probable human carcinogen that has been detected in various environments including the atmosphere, clouds, surface waters, and drinking water. NDMA can form through natural reactions in the aqueous phase of the atmosphere and it can form as a disinfection byproduct in water treatment. Due to its carcinogenic nature, it is important to understand the mechanism of formation of NDMA in both engineered processes such as water treatment and in natural processes in fogs and clouds. NDMA might form through the reaction of chloramines with amines in both cases. This work analyzes polydiallyldimethyl ammonium chloride (PolyDADMAC), which is the most commonly used polymer at drinking water treatment plants and has the potential to form NDMA if free polymer is present during the chloramination (disinfection) process. The composition of industrial polyDADMAC solutions is not well understood and is difficult to analyze. This work uses 1H and 13C nuclear magnetic resonance (NMR) to analyze the polymer solution composition. Both 1H and 13C NMR allow investigation of the presence of trace impurities in the solution, gather structural information such as chain length, and inform on reaction mechanisms. The primary impurities of concern for NDMA formation were identified as dimethylamine (DMA) and short-chain oligomers of the polyDADMAC. 13C NMR was further used to confirm that NDMA likely forms from polyDADMAC via a Hofmann elimination. Chloramines might also form in fogs and clouds although to date the potential for chloramines to form NDMA in atmospheric fog and cloud droplets has not been investigated. This work uses computational modeling to determine that at reported atmospheric conditions, the chloramine pathway contributes to less than 0.01% NDMA formation. The numerical modeling identified a need for more atmospheric HOCl measurements. This work proposes a concept of using HOCl to react to form chloramine, which can react to form NDMA as a way to quantify atmospheric HOCl.
ContributorsDonovan, Samantha Jo (Author) / Herckes, Pierre (Thesis advisor) / Westerhoff, Paul (Committee member) / Hayes, Mark (Committee member) / Arizona State University (Publisher)
Created2022
171994-Thumbnail Image.png
Description
The world has seen a revolution in cellular communication with the advent of 5G, which enables gigabits per second data speed with low latency, massive capacity, and increased availability. Complex modulated signals are used in these moderncommunication systems to achieve high spectral efficiency, and these signals exhibit high peak to

The world has seen a revolution in cellular communication with the advent of 5G, which enables gigabits per second data speed with low latency, massive capacity, and increased availability. Complex modulated signals are used in these moderncommunication systems to achieve high spectral efficiency, and these signals exhibit high peak to average power ratios (PAPR). Design of cellular infrastructure hardware to support these complex signals therefore becomes challenging, as the transmitter’s radio frequency power amplifier (RF PA) needs to remain highly efficient at both peak and backed off power conditions. Additionally, these PAs should exhibit high linearity and support continually increasing bandwidths. Many advanced PA configurations exhibit high efficiency for processing legacy communications signals. Some of the most popular architectures are Envelope Elimination and Restoration (EER), Envelope Tracking (ET), Linear Amplification using Non-linear Component (LINC), Doherty Power Amplifiers (DPA), and Polar Transmitters. Among these techniques, the DPA is the most widely used architecture for base-station applications because of its simple configuration and ability to be linearized using simple digital pre-distortion (DPD) algorithms. To support the cellular infrastructure needs of 5G and beyond, RF PAs, specifically DPA architectures, must be further enhanced to support broader bandwidths as well as smaller form-factors with higher levels of integration. The following four novel works are presented in this dissertation to support RF PA requirements for future cellular infrastructure: 1. A mathematical analysis to analyze the effects of non-linear parasitic capacitance (Cds) on the operation of continuous class-F (CCF) mode power amplifiers and identify their optimum operating range for high power and efficiency. 2. A methodology to incorporate a class-J harmonic trapping network inside the PA package by considering the effect of non-linear Cds, thus reducing the DPA footprint while achieving high RF performance. 3. A novel method of synthesizing the DPA’s output combining network (OCN) to realize an integrated two-stage integrated LDMOS asymmetric DPA. 4. A novel extended back-off efficiency range DPA architecture that engineers the mutual interaction between combining load and peaking off-state impedance. The theory and architecture are verified through a GaN-based DPA design.
ContributorsAhmed, Maruf Newaz (Author) / Kitchen, Jennifer (Thesis advisor) / Aberle, James (Committee member) / Bakkaloglu, Bertan (Committee member) / Ozev, Sule (Committee member) / Arizona State University (Publisher)
Created2022