Matching Items (197)
171463-Thumbnail Image.png
Description
District heating plays an important role in improving energy efficiency and providing thermal heat to buildings. Instead of using water as an energy carrier to transport sensible heat, this dissertation explores the use of liquid-phase thermochemical reactions for district heating as well as thermal storage. Chapters 2 and 3 present

District heating plays an important role in improving energy efficiency and providing thermal heat to buildings. Instead of using water as an energy carrier to transport sensible heat, this dissertation explores the use of liquid-phase thermochemical reactions for district heating as well as thermal storage. Chapters 2 and 3 present thermodynamic and design analyses for the proposed district heating system. Chapter 4 models the use of liquid-phase thermochemical reactions for on-site solar thermal storage. In brief, the proposed district heating system uses liquid-phase thermochemical reactions to transport thermal energy from a heat source to a heat sink. The separation ensures that the stored thermochemical heat can be stored indefinitely and/or transported long distances. The reactant molecules are then pumped over long distances to the heat sink, where they are combined in an exothermic reaction to provide heat. The product of the exothermic reaction is then pumped back to the heat source for re-use. The key evaluation parameter is the system efficiency. The results demonstrate that with heat recovery, the system efficiency can be up to 77% when the sink temperature equals 25 C. The results also indicate that the appropriate chemical reaction candidates should have large reaction enthalpy and small reaction entropy. Further, the design analyses of two district heating systems, Direct District Heating (DDH) system and Indirect District Heating (IDH) system using the solvated case shows that the critical distance is 106m. When the distance is shorter than 1000,000m, the factors related to the chemical reaction at the user side and factors related to the separation process are important for the DDH system. When the distance is longer than 106m, the factors related to the fluid mechanic become more important. Because the substation of the IDH system degrades the quality of the energy, when the distance is shorter than 106m, the efficiency of the substation is significant. Lastly, I create models for on-site solar thermal storage systems using liquid-phase thermochemical reactions and hot water. The analysis shows that the thermochemical reaction is more competitive for long-duration storage applications. However, the heat recovery added to the thermochemical thermal storage system cannot help improving solar radiation absorption with high inlet temperature of the solar panel.
ContributorsZhang, Yanan (Author) / Wang, Robert (Thesis advisor) / Milcarek, Ryan (Committee member) / Parrish, Kristen (Committee member) / Phelan, Patrick (Committee member) / Rykaczewski, Konrad (Committee member) / Arizona State University (Publisher)
Created2022
190983-Thumbnail Image.png
Description
This work presents two balanced power amplifier (PA) architectures, one at X-band and the other at K-band. The presented balanced PAs are designed for use in small satellite and cube satellite applications.The presented X-band PA employs wideband hybrid couplers to split input power to two commercial off-the-shelf (COTS) Gallium Nitride

This work presents two balanced power amplifier (PA) architectures, one at X-band and the other at K-band. The presented balanced PAs are designed for use in small satellite and cube satellite applications.The presented X-band PA employs wideband hybrid couplers to split input power to two commercial off-the-shelf (COTS) Gallium Nitride (GaN) monolithic microwave integrated circuit (MMIC) PAs and combine their output powers. The presented X-band balanced PA manufactured on a Rogers 4003C substrate yields increased small signal gain and saturated output power under continuous wave (CW) operation compared to the single MMIC PA used in the design under pulsed operation. The presented PA operates from 7.5 GHz to 11.5 GHz, has a maximum small signal gain of 36.3 dB, a maximum saturated power out of 40.0 dBm, and a maximum power added efficiency (PAE) of 38%. Both a Wilkinson and a Gysel splitter and combiner are designed for use at K-band and their performance is compared. The presented K-band balanced PA uses Gysel power dividers and combiners with a GaN MMIC PA that is soon to be released in production.
ContributorsPearson, Katherine Elizabeth (Author) / Kitchen, Jennifer (Thesis advisor) / Bakkaloglu, Bertan (Committee member) / Ozev, Sule (Committee member) / Arizona State University (Publisher)
Created2023
190915-Thumbnail Image.png
Description
Impedance is one of the fundamental properties of electrical components, materials, and waves. Therefore, impedance measurement and monitoring have a wide range of applications. The multi-port technique is a natural candidate for impedance measurement and monitoring due to its low overhead and ease of implementation for Built-in Self-Test (BIST) applications.

Impedance is one of the fundamental properties of electrical components, materials, and waves. Therefore, impedance measurement and monitoring have a wide range of applications. The multi-port technique is a natural candidate for impedance measurement and monitoring due to its low overhead and ease of implementation for Built-in Self-Test (BIST) applications. The multi-port technique can measure complex reflection coefficients, thus impedance, by using scalar measurements provided by the power detectors. These power detectors are strategically placed on different points (ports) of a passive network to produce unique solution. Impedance measurement and monitoring is readily deployed on mobile phone radio-frequency (RF) front ends, and are combined with antenna tuners to boost the signal reception capabilities of phones. These sensors also can be used in self-healing circuits to improve their yield and performance under process, voltage, and temperature variations. Even though, this work is preliminary interested in low-overhead impedance measurement for RF circuit applications, the proposed methods can be used in a wide variety of metrology applications where impedance measurements are already used. Some examples of these applications include determining material properties, plasma generation, and moisture detection. Additionally, multi-port applications extend beyond the impedance measurement. There are applications where multi-ports are used as receivers for communication systems, RADARs, and remote sensing applications. The multi-port technique generally requires a careful design of the testing structure to produce a unique solution from power detector measurements. It also requires the use of nonlinear solvers during calibration, and depending on calibration procedure, measurement. The use of nonlinear solvers generates issues for convergence, computational complexity, and resources needed for carrying out calibrations and measurements in a timely manner. In this work, using periodic structures, a structure where a circuit block repeats itself, for multi-port measurements is proposed. The periodic structures introduce a new constraint that simplifies the multi-port theory and leads to an explicit calibration and measurement procedure. Unlike the existing calibration procedures which require at least five loads and various constraints on the load for explicit solution, the proposed method can use three loads for calibration. Multi-ports built with periodic structures will always produce a unique measurement result. This leads to increased bandwidth of operation and simplifies design procedure. The efficacy of the method demonstrated in two embodiments. In the first embodiment, a multi-port is directly embedded into a matching network to measure impedance of the load. In the second embodiment, periodic structures are used to compare two loads without requiring any calibration.
ContributorsAvci, Muslum Emir (Author) / Ozev, Sule (Thesis advisor) / Bakkaloglu, Bertan (Committee member) / Kitchen, Jennifer (Committee member) / Trichopoulos, Georgios (Committee member) / Arizona State University (Publisher)
Created2023
189318-Thumbnail Image.png
Description
Sweat evaporation is fundamental to human thermoregulation, yet our knowledge of the microscale sweat droplet evaporation dynamics is very limited. To study sweat droplet evaporation, a reliable way to measure sweat evaporation rate from skin and simultaneously image the droplet dynamics through midwave infrared thermography (MWIR) or optical coherence tomography

Sweat evaporation is fundamental to human thermoregulation, yet our knowledge of the microscale sweat droplet evaporation dynamics is very limited. To study sweat droplet evaporation, a reliable way to measure sweat evaporation rate from skin and simultaneously image the droplet dynamics through midwave infrared thermography (MWIR) or optical coherence tomography (OCT) is required. Ventilated capsule is a common device employed for measuring sweat evaporation rates in physiological studies. However, existing designs of ventilated capsules with cylindrical flow chambers create unrealistic flow conditions that include flow separation and swirling. To address this problem, this thesis introduces a ventilated capsule with rectangular sweat evaporation area preceded by a diffuser section with geometry based on wind tunnel design guidelines. To allow for OCT or MWIR imaging, a provision to install an acrylic or a sapphire window directly over the exposed skin surface being measured is incorporated in the design. In addition to the capsule, a simplified artificial sweating surface that can supply water in a filmwise, single or multiple droplet form was developed. The performance of the capsule is demonstrated using the artificial sweating surface along with example MWIR imaging.
ContributorsRamesh, Rajesh (Author) / Rykaczewski, Konrad (Thesis advisor) / Kavouras, Stavros (Committee member) / Phelan, Patrick (Committee member) / Burke, Richard (Committee member) / Arizona State University (Publisher)
Created2023
187583-Thumbnail Image.png
Description
Modern-day automobiles are becoming more connected and reliant on wireless connectivity. Thus, automotive electronics can be both a cause of and highly sensitive to electromagnetic interference (EMI), and the consequences of failure can be fatal. Technology advancements in engineering have brought several features into the automotive field but at the

Modern-day automobiles are becoming more connected and reliant on wireless connectivity. Thus, automotive electronics can be both a cause of and highly sensitive to electromagnetic interference (EMI), and the consequences of failure can be fatal. Technology advancements in engineering have brought several features into the automotive field but at the expense of electromagnetic compatibility issues. Automotive EMC problems are the result of the emissions from electronic assemblies inside a vehicle and the susceptibility of the electronics when exposed to external EMI sources. In both cases, automotive EMC problems can cause unintended changes in the automotive system operation. Robustness to electromagnetic interference (EMI) is one of the primary design aspects of state-of-the-art automotive ICs like System Basis Chips (SBCs) which provide a wide range of analog, power regulation and digital functions on the same die. One of the primary sources of conducted EMI on the Local Interconnect Network (LIN) driver output is an integrated switching DC-DC regulator noise coupling through the parasitic substrate capacitance of the SBC. In this dissertation an adaptive active EMI cancellation technique to cancel the switching noise of the DC-DC regulator on the LIN driver output to ensure electromagnetic compatibility (EMC) is presented. The proposed active EMI cancellation circuit synthesizes a phase synchronized cancellation pulse which is then injected onto the LIN driver output using an on-chip tunable capacitor array to cancel the switching noise injected via the substrate. The proposed EMI reduction technique can track and cancel substrate noise independent of process technology and device parasitics, input voltage, duty cycle, and loading conditions of the DC-DC switching regulator. The EMI cancellation system is designed and fabricated on a 180nm Bipolar-CMOS-DMOS (BCD) process with an integrated power stage of a DC-DC buck regulator at a switching frequency of 2MHz along with an automotive LIN driver. The EMI cancellation circuit occupies an area of 0.7 mm2, which is less than 3% of the overall area in a standard SBC and consumes 12.5 mW of power and achieves 25 dB reduction of conducted EMI in the LIN driver output’s power spectrum at the switching frequency and its harmonics.
ContributorsRay, Abhishek (Author) / Bakkaloglu, Bertan (Thesis advisor) / Garrity, Douglas (Committee member) / Kitchen, Jennifer (Committee member) / Seo, Jae-Sun (Committee member) / Arizona State University (Publisher)
Created2023
171388-Thumbnail Image.png
Description
Thermal management of electronics is critical to meet the increasing demand for high power and performance. Thermal interface materials (TIMs) play a key role in dissipating heat away from the microelectronic chip and hence are a crucial component in electronics cooling. Challenges persist with overcoming the interfacial boundary resistance and

Thermal management of electronics is critical to meet the increasing demand for high power and performance. Thermal interface materials (TIMs) play a key role in dissipating heat away from the microelectronic chip and hence are a crucial component in electronics cooling. Challenges persist with overcoming the interfacial boundary resistance and filler particle connectivity in TIMs to achieve thermal percolation while maintaining mechanical compliance. Gallium-based liquid metal (LM) capsules offer a unique set of thermal-mechanical characteristics that make them suitable candidates for high-performance TIM fillers. This dissertation research focuses on resolving the fundamental challenges posed by integration of LM fillers in polymer matrix. First, the rupture mechanics of LM capsules under pressure is identified as a key factor that dictates the thermal connectivity between LM-based fillers. This mechanism of oxide “popping” in LM particle beds independent of the matrix material provides insights in overcoming the particle-particle connectivity challenges. Second, the physical barrier introduced due to the polymer matrix needs to be overcome to achieve thermal percolation. Matrix fluid viscosity impacts thermal transport, with high viscosity uncured matrix inhibiting the thermal bridging of fillers. In addition, incorporation of solid metal co-fillers that react with LM fillers is adopted to facilitate popping of LM oxide in uncured polymer to overcome this matrix barrier. Solid silver metal additives are used to rupture the LM oxide, form inter-metallic alloy (IMC), and act as thermal anchors within the matrix. This results in the formation of numerous thermal percolation paths and hence enhances heat transport within the composite. Further, preserving this microstructure of interconnected multiphase filler system with thermally conductive percolation pathways in a cured polymer matrix is critical to designing high-performing TIM pads. Viscosity of the precursor polymer solution prior to curing plays a major role in the resulting thermal conductivity. A multipronged strategy is developed that synergistically combines reactive solid and liquid fillers, a polymer matrix with low pre-cure viscosity, and mechanical compression during thermal curing. The results of this dissertation aim to provide fundamental insights into the integration of LMs in polymer composites and give design knobs to develop high thermally conducting soft composites.
ContributorsUppal, Aastha (Author) / Rykaczewski, Konrad (Thesis advisor) / Wang, Robert (Thesis advisor) / Kwon, Beomjin (Committee member) / Choksi, Gaurang (Committee member) / Phelan, Patrick (Committee member) / Arizona State University (Publisher)
Created2022
Description

Three models have been created to visualize and characterize the voltage response of a standing wave accelerating cavity system. These models are generalized to fit any cavity with known values of the quality factor, coupling factor, and resonant frequency but were applied to the Arizona State Universities Compact X-ray Free

Three models have been created to visualize and characterize the voltage response of a standing wave accelerating cavity system. These models are generalized to fit any cavity with known values of the quality factor, coupling factor, and resonant frequency but were applied to the Arizona State Universities Compact X-ray Free Electron Laser. To model these systems efficiently, baseband I and Q measurements were used to eliminate the modeling of high frequencies. The three models discussed in this paper include a single standing wave cavity, two cavities coupled through a 3dB quadrature hybrid, and a pulse compression system. The second model on two coupled cavities will demonstrate how detuning will impact two cavities with the same RF source split through a hybrid. The pulse compression model will be used to demonstrate the impact of feeding pulse compression into a standing wave cavity. The pulse compressor will demonstrate more than a 50\% increase of the voltage inside the cavity.

ContributorsFalconer, Jasmin (Author) / Graves, William (Thesis director) / Kitchen, Jennifer (Committee member) / Barrett, The Honors College (Contributor) / Electrical Engineering Program (Contributor)
Created2023-05
168545-Thumbnail Image.png
Description新世纪以来中国电影的产业化改革与探索愈发呈现良好的态势,国产院线电影也在实践中努力赢得观众和票房市场。其中类型喜剧电影,最符合商业电影规律、最顺应影视市场需求、最能获得票房收益而备受影视创投机构、制作公司青睐。本论文研究对象聚焦类型喜剧电影,通过“欢声笑语里的财富”现象,探究类型喜剧电影内部本体构成要素与外部客观促成要素的关联;以通过分析自变量与因变量因素对中国电影票房之类型喜剧影响因素进行实证研究,为影视创投和影视制作总结并提供可靠建议。 本论文整体结构包括:第一部分为导论,包括研究背景、目的意义,相关文献综述与文献评述和论文创新性。第二部分聚焦类型喜剧本身,从电影学范畴的电影本体出发,探究“笑”的心理、社会与文化内涵,并分析将“笑”对经济领域的延伸。第三部分以影视投资、票房为依托,从现象和数据中探寻影响类型喜剧电影的因素,为展开中国电影票房之类型喜剧影响因素实证研究做好理论的铺垫。第四与第五部分则基于上述理论进行实证检验,选用2013-2020年电影样本,采用多元线性回归模型研究喜剧类型对票房的吸引力,以及不同种类型喜剧对电影票房的提振效果作用差异。研究发现喜剧电影对电影票房有显著的提振作用;以及研究电影的外部影响因素(续集效应)对电影票房的作用。发现续集电影有更好的票房表现,续集效应的票房提升作用在喜剧电影中表现的更加明显。 本论文研究成果最终将回归到“欢声笑语里的财富”本身;即“类型复合喜剧”对促进电影与金融产业的互动关联、实现更加可持续化发展,以及进而推动经济及文化业的发展。
ContributorsLiu, Yongqian (Author) / Shen, Wei (Thesis advisor) / Zhu, Ning (Thesis advisor) / Dong, Xiaodan (Committee member) / Arizona State University (Publisher)
Created2022
168436-Thumbnail Image.png
Description人口的老龄化不仅对养老事业提出更高的要求,也对养老服务产业人才的培养提出要求。但是青年学生选择涉老服务专业的意愿却非常低。因此,为了探究职业学院如何增强涉老服务专业吸引力这一问题,本文以学生为主体视角,利用相关理论,对于影响青年学生选择涉老服务专业的因素进行全面的分析,并结合深度访谈和调查法,提出并建构了相关的理论模型。首先,通过深度访谈和焦点小组讨论,结合对现有的文献的分析,本文提出了影响青年学生选择职业院校涉老服务专业的各种因素,主要包括:个人未来风险感知、家庭经济资本、社会信息评价、校企合作水平、专业课程建设水平、学生激励水平、师资队伍建设水平。之后,本文通过调查法,基于社会认同理论构建了本文的研究模型,并通过结构方程模型对所构建的模型进行检查。 本文的研究结果表明:个人未来风险感知对学生专业认同度产生负面影响;家庭经济资本对学生专业认同度产生负面影响;社会信息评价对学生专业认同度产生正面影响;校企合作水平对学生专业认同度产生正面影;专业课程建设水平对学生专业认同度产生正面影响;学生激励水平对学生专业认同度产生正面影响;师资队伍建设水平对学生专业认同度产生正面影响;学生专业认同度对学生专业选择意愿产生正面影响。 基于上述研究结论,本文选取了个人未来风险感知、家庭经济资本、社会信息评价、校企合作水平、专业课程建设水平、学生激励水平、师资队伍建设水平等因素对于广东岭南职业技术学院涉老服务专业的现有吸引力进行了分析和评估,并从这些视角进一步了对如何提升招生吸引力问题进行探讨,为提高涉老服务专业对于青年学生的吸引力,得出了相关管理建议。
ContributorsZhou, Lanqing (Author) / Shen, Wei (Thesis advisor) / Wu, Fei (Thesis advisor) / Pei, Ker-Wei (Committee member) / Arizona State University (Publisher)
Created2021
168397-Thumbnail Image.png
Description
The development of portable electronic systems has been a fundamental factor to the emergence of new applications including ubiquitous smart devices, self-driving vehicles. Power-Management Integrated Circuits (PMICs) which are a key component of such systems must maintain high efficiency and reliability for the final system to be appealing from a

The development of portable electronic systems has been a fundamental factor to the emergence of new applications including ubiquitous smart devices, self-driving vehicles. Power-Management Integrated Circuits (PMICs) which are a key component of such systems must maintain high efficiency and reliability for the final system to be appealing from a size and cost perspective. As technology advances, such portable systems require high output currents at low voltages from their PMICs leading to thermal reliability concerns. The reliability and power integrity of PMICs in such systems also degrades when operated in harsh environments. This dissertation presents solutions to solve two such reliability problems.The first part of this work presents a scalable, daisy-chain solution to parallelize multiple low-dropout linear (LDO) regulators to increase the total output current at low voltages. This printed circuit board (PCB) friendly approach achieves output current sharing without the need for any off-chip active or passive components or matched PCB traces thus reducing the overall system cost. Fully integrated current sensing based on dynamic element matching eliminates the need for any off-chip current sensing components. A current sharing accuracy of 2.613% and 2.789% for output voltages of 3V and 1V respectively and an output current of 2A per LDO are measured for the parallel LDO system implemented in a 0.18μm process. Thermal images demonstrate that the parallel LDO system achieves thermal equilibrium and stable reliable operation. The remainder of the thesis deals with time-domain switching regulators for high-reliability applications. A time-domain based buck and boost controller with time as the processing variable is developed for use in harsh environments. The controller features adaptive on-time / off-time generation for quasi-constant switching frequency and a time-domain comparator to implement current-mode hysteretic control. A triple redundant bandgap reference is also developed to mitigate the effects of radiation. Measurement results are showcased for a buck and boost converter with a common controller IC implemented in a 0.18μm process and an external power stage. The converter achieves a peak efficiency of 92.22% as a buck for an output current of 5A and an output voltage of 5V. Similarly, the converter achieves an efficiency of 95.97% as a boost for an output current of 1.25A and an output voltage of 30.4V.
ContributorsTalele, Bhushan (Author) / Bakkaloglu, Bertan (Thesis advisor) / Garrity, Douglas (Committee member) / Seo, Jae-Sun (Committee member) / Kitchen, Jennifer (Committee member) / Arizona State University (Publisher)
Created2021