Matching Items (251)
Description
Deterministic solutions are available to estimate the resilient modulus of unbound materials, which are difficult to interpret because they do not incorporate the variability associated with the inherent soil heterogeneity and that associated with environmental conditions. This thesis presents the stochastic evaluation of the Enhanced Integrated Climatic Model (EICM), which

Deterministic solutions are available to estimate the resilient modulus of unbound materials, which are difficult to interpret because they do not incorporate the variability associated with the inherent soil heterogeneity and that associated with environmental conditions. This thesis presents the stochastic evaluation of the Enhanced Integrated Climatic Model (EICM), which is a model used in the Mechanistic-Empirical Pavement Design Guide to estimate the soil long-term equilibrium resilient modulus. The stochastic evaluation is accomplished by taking the deterministic equations in the EICM and applying stochastic procedures to obtain a mean and variance associated with the final design parameter, the resilient modulus at equilibrium condition. In addition to the stochastic evaluation, different statistical analyses were applied to determine that the uses of hierarchical levels are valid in the unbound pavement material design and the climatic region has an impact on the final design resilient moduli at equilibrium. After determining that the climatic regions and the hierarchical levels are valid, reliability was applied to the resilient moduli at equilibrium. Finally, the American Association of State Highway and Transportation Officials (AASHTO) design concept based on the Structural Number (SN) was applied in order to illustrate the true implications the hierarchical levels of design and the variability associated with environmental effects and soil properties have in the design of pavement structures. The stochastic solutions developed as part of this thesis work together with the SN design concept were applied to five soils with different resilient moduli at optimum compaction condition in order to evaluate the variability associated with the resilient moduli at equilibrium condition. These soils were evaluated in five different climatic regions ranging from arid to extremely wet conditions. The analysis showed that by using the most accurate input parameters obtained from laboratory testing (hierarchical Level 1) instead of Level 3 analysis could potentially save the State Department of Transportation up to 10.12 inches of asphalt in arid and semi-arid regions.
ContributorsRosenbalm, Daniel (Author) / Zapata, Claudia (Thesis advisor) / Witczak, Matthew (Committee member) / Kaloush, Kamil (Committee member) / Arizona State University (Publisher)
Created2011
150721-Thumbnail Image.png
Description

Pavement preservation is the practice of selecting and applying maintenance activities in order to extend pavement life, enhance performance, and ensure cost effectiveness. Pavement preservation methods should be applied before pavements display significant amounts of environmental distress. The long-term effectiveness of different pavement preservation techniques can be measured in terms

Pavement preservation is the practice of selecting and applying maintenance activities in order to extend pavement life, enhance performance, and ensure cost effectiveness. Pavement preservation methods should be applied before pavements display significant amounts of environmental distress. The long-term effectiveness of different pavement preservation techniques can be measured in terms of life extension, relative benefit, and benefit-cost ratio. Optimal timing of pavement preservation means that the given maintenance treatment is applied so that it will extend the life of the roadway for the longest possible period with the minimum cost. This document examines the effectiveness of chip seal treatment in four climatic zones in the United States. The Long-Term Pavement Performance database was used to extract roughness and traffic data, as well as the maintenance and rehabilitation histories of treated and untreated sections. The sections were categorized into smooth, medium, and rough pavements, based upon initial condition as indicated by the International Roughness Index. Pavement performance of treated and untreated sections was collectively modeled using exponential regression analysis. Effectiveness was evaluated in terms of life extension, relative benefit, and benefit-cost ratio. The results of the study verified the assumption that treated sections performed better than untreated sections. The results also showed that the life extension, relative benefit, and benefit cost ratio are highest for sections whose initial condition is smooth at the time of chip seal treatment. These same measures of effectiveness are lowest for pavements whose condition is rough at the time of treatment. Chip seal treatment effectiveness showed no correlation to climatic conditions or to traffic levels.

ContributorsDosa, Matild (Author) / Mamlouk, Michael S. (Thesis advisor) / Kaloush, Kamil (Committee member) / Zapata, Claudia E (Committee member) / Arizona State University (Publisher)
Created2012
136333-Thumbnail Image.png
Description
Utilizing an urban canopy model (UCM) developed by Zhihua Wang, Ph.D. for a research study conducted for the National Asphalt Pavement Association (NAPA), several scenarios were run in order to determine the impact on the mitigation of the urban heat island (UHI) effect. These scenarios included various roof albedo, wall

Utilizing an urban canopy model (UCM) developed by Zhihua Wang, Ph.D. for a research study conducted for the National Asphalt Pavement Association (NAPA), several scenarios were run in order to determine the impact on the mitigation of the urban heat island (UHI) effect. These scenarios included various roof albedo, wall albedo, ground albedo, a combination of all three albedos, roof emissivity, wall emissivity, ground emissivity, a combination of all three emissivities, and normalized building height as independent variables. Dependent variables included canyon air temperature, effective ground temperature, effective roof temperature, effective wall temperature, and sensible heat flux. It was found that emissivity does play a part in reducing the different dependent variables; however, typically emissivity values are already within a preferred range that not much can be done with them. Normalized building height has a minor impact but the impact that it does have upon the different variables is lessened with lower values of the normalized building height. Increasing the wall albedo decreased the canyon air temperature and the effective wall temperature the most compared to the other variables when considering expenses. An increase in roof albedo reduced effective roof temperature and sensible heat flux the most when taking into consideration the cost of changing the albedo of the surface. Larger values of ground albedo helped to reduce the effective ground temperature more than the other variables considered when a budget is necessary.
ContributorsHousenga, Hannah Eileen (Author) / Kaloush, Kamil (Thesis director) / Wang, Zhihua (Committee member) / Civil, Environmental and Sustainable Engineering Programs (Contributor) / Barrett, The Honors College (Contributor)
Created2015-05
136019-Thumbnail Image.png
Description
In recent years, products advertised to contain nanosilver have become increasingly popular; however, while companies often advertise for nanosilver products, little regulation occurs to verify that these products actually contain silver nanoparticles. Furthermore, there currently exists much dispute regarding the safety and toxicity of silver nanoparticles. As more and more

In recent years, products advertised to contain nanosilver have become increasingly popular; however, while companies often advertise for nanosilver products, little regulation occurs to verify that these products actually contain silver nanoparticles. Furthermore, there currently exists much dispute regarding the safety and toxicity of silver nanoparticles. As more and more products incorporate nanosilver, the resolution of this dispute proves progressively important. The present study addressed these issues, with goals to synthesize silver nanoparticles, determine the solubility of the synthesized silver nanoparticles, and to evaluate leaching of nanosilver from commercially produced food storage containers. The silver nanoparticles were synthesized by a procedure devised by Leopold and Lendl, and subsequently evaluated for size and distribution by ICP-MS (Inductively Coupled Plasma Mass Spectrometry), SEC (Size Exclusion Chromatography), and DLS (Dynamic Light Scattering). The results indicated an average particle size of approximately 85 nm and a relatively monodispersed solution with a polydispersity value of 0.1245. The solubility of the nanoparticles was then examined using a dialysis experiment; however, the results of the dialysis experiments were inconclusive due to an aggregation that occurred which prevented the silver from diffusing out of the dialysis tubing. Lastly, commercially produced food storage containers advertised to contain silver nanoparticles were examined. These containers were digested using microwave assisted digestion, and subsequently analyzed using ICP-MS. It was determined that the containers contained between 7 .5 and 27 ug of silver per gram of container, and that the silver was not distributed uniformly throughout the container. While ICP-MS indicated the presence of silver, SEM (Scanning Electron Microscopy) failed to unambiguously identify silver nanoparticles in the container. The food storage containers were also examined for silver leaching under various conditions; it was found that the containers leached most greatly following exposure to an acidic solution and leached the least due to exposure to UV light. However, additional trials of the leaching experiments must be performed to validate the results obtained in these experiments.
ContributorsWilson, Amanda (Author) / Herckes, Pierre (Thesis director) / Westerhoff, Paul (Committee member) / McAllister, Chad (Committee member) / Barrett, The Honors College (Contributor)
Created2012-05
135953-Thumbnail Image.png
Description
In this investigation, copper slag was used as a coarse aggregate in four different mixes of concrete, consisting of 0%, 25%, 50%, and 100% copper slag by volume. Locally available Salt river aggregate was used as a control, and mixes were tested for density, strength, thermal conductivity, specific heat capacity,

In this investigation, copper slag was used as a coarse aggregate in four different mixes of concrete, consisting of 0%, 25%, 50%, and 100% copper slag by volume. Locally available Salt river aggregate was used as a control, and mixes were tested for density, strength, thermal conductivity, specific heat capacity, and thermal diffusivity. Density was shown to increase with increasing copper slag content, increasing an average of 2298 kg/m^3, 2522 kg/m^3, and 2652 kg/m^3 in the 25%, 50%, and 100% mixes. This represents a 15% increase in density from 0% to 100%. Compressive strength testing indicated that the presence of copper slag in concrete provides no definitive strength benefit over Salt River aggregate. This result was expected, as concrete's strength is primarily derived from the cement matrix and not the aggregate. Thermal conductivity showed a decreasing trend with increasing copper slag content. Th control mix had an average conductivity of 0.660 W/m*K, and the 25%, 50%, and 100% mixes had conductivities of 0.649 W/m*K, 0.647 W/m*K, and 0.519 W/m*K, respectively. This represents 21% drop in thermal conductivity over the control. This result was also expected, as materials formed at higher temperatures, like copper slag, tend to have lower thermal conductivities. Specific heat capacity testing yielded results that were statistically indeterminate, though unlike strength testing this arose from inaccurate assumptions made during testing. This also prevented accurate thermal diffusivity results, as diffusivity is a function of density, thermal conductivity, and specific heat capacity. However, given the trends of the first two parameters, it is plausible to say that diffusivity in copper slag concrete would be lower than that of the control ix. All of these results were plugged into ASU's Pavement Temperature Model to see what effect they had in mitigating the UHI effect.
ContributorsLaughlin, Colin (Author) / Kaloush, Kamil (Thesis director) / Phelan, Patrick (Committee member) / Witczak, Kenneth (Committee member) / Barrett, The Honors College (Contributor)
Created2012-05
136883-Thumbnail Image.png
Description
The current EPA regulation for total chromium in drinking water is the MCL standard of 0.1 milligrams per liter or 100 parts per billion (ppb) to avoid dermatological effects. With a toxicology study released in 2008 by the Department of Health and Human Services noting that hexavalent chromium is carcinogenic,

The current EPA regulation for total chromium in drinking water is the MCL standard of 0.1 milligrams per liter or 100 parts per billion (ppb) to avoid dermatological effects. With a toxicology study released in 2008 by the Department of Health and Human Services noting that hexavalent chromium is carcinogenic, the EPA is currently reviewing this MCL standard. During this review, the EPA provides monitoring guidance that requires quarterly sampling of surface water for hexavalent chromium. However, these samples monitor the instant in time that they were taken, and do not account for varying concentrations that are time-dependent. This research seeks to develop a method for monitoring hexavalent chromium in water. Using ion exchange technology, passive samplers were developed and installed at the Chandler Water Treatment Plant for a week-long monitoring event. Results show that passive samplers using ion exchange technology provide an accurate assessment of the average concentration of total chromium within the water treatment plant's effluent with 90.3% recovery of Cr(VI) in SIR-100 resin and 62.6% recovery in SIR-700.
ContributorsLesan, Dylan Scott (Author) / Westerhoff, Paul (Thesis director) / Supowit, Samuel (Committee member) / Bowen, Alexandra (Committee member) / Civil, Environmental and Sustainable Engineering Programs (Contributor) / Barrett, The Honors College (Contributor)
Created2014-05
137640-Thumbnail Image.png
Description
After describing the types of foundation systems employed for high rise buildings, this thesis discusses the process of foundation design for tall buildings as it is practiced today, including computer programs used in designing the foundations of high rise buildings. This thesis then presents the geotechnical in-situ and laboratory tests

After describing the types of foundation systems employed for high rise buildings, this thesis discusses the process of foundation design for tall buildings as it is practiced today, including computer programs used in designing the foundations of high rise buildings. This thesis then presents the geotechnical in-situ and laboratory tests used to establish the parameters required for input to design analyses for high rise building foundations. This thesis subsequently describes the Construction Quality Assurance practices used in the construction of the foundations of high rise buildings. This thesis next presents several case histories detailing the foundation practices employed in the design and construction of modern high rise buildings. Finally, this thesis provides some concluding thoughts regarding the development of the geotechnical practices when designing and constructing high rise buildings.
ContributorsMohammad, Saeed Ishaq (Author) / Kavazanjian, Edward (Thesis director) / Zapata, Claudia (Committee member) / Houston, Sandra (Committee member) / Civil, Environmental and Sustainable Engineering Programs (Contributor) / Barrett, The Honors College (Contributor)
Created2013-05
141391-Thumbnail Image.png
Description

Rapid urbanization of the planet is occurring at an unprecedented pace, primarily in arid and semi-arid hot climates [Golden, J.S., 2004. The built environment induced urban heat island effect in rapidly urbanizing arid regions – a sustainable urban engineering complexity. Environ. Sci. J. Integr. Environ. Res. 1 (4), 321–349]. This

Rapid urbanization of the planet is occurring at an unprecedented pace, primarily in arid and semi-arid hot climates [Golden, J.S., 2004. The built environment induced urban heat island effect in rapidly urbanizing arid regions – a sustainable urban engineering complexity. Environ. Sci. J. Integr. Environ. Res. 1 (4), 321–349]. This growth has manifested itself as a cause of various impacts including elevated urban temperatures in comparison to rural sites known as the Urban Heat Island (UHI) effect [Oke, T.R., 1982. The energetic basis of the urban heat island. Q. J. R. Meteor. Soc. 108, 1–24]. Related are the increased demands for electric power as a result of population growth and increased need for mechanical cooling due to the UHI. In the United States, the Environmental Protection Agency has developed a three-prong approach of (1) cool pavements, (2) urban forestry and (3) cool roofs to mitigate the UHI. Researchers undertook an examination of micro scale benefits of the utilization of photovoltaic panels to reduce the thermal impacts to surface temperatures of pavements in comparison to urban forestry. The results of the research indicate that photovoltaic panels provide a greater thermal reduction benefit during the diurnal cycle in comparison to urban forestry while also providing the additional benefits of supporting peak energy demand, conserving water resources and utilizing a renewable energy source.

ContributorsGolden, Jay S. (Author) / Carlson, Joby (Author) / Kaloush, Kamil (Author) / Phelan, Patrick (Author)
Created2006-12-26
141440-Thumbnail Image.png
Description

Engineered pavements cover a large fraction of cities and offer significant potential for urban heat island mitigation. Though rapidly increasing research efforts have been devoted to the study of pavement materials, thermal interactions between buildings and the ambient environment are mostly neglected. In this study, numerical models featuring a realistic

Engineered pavements cover a large fraction of cities and offer significant potential for urban heat island mitigation. Though rapidly increasing research efforts have been devoted to the study of pavement materials, thermal interactions between buildings and the ambient environment are mostly neglected. In this study, numerical models featuring a realistic representation of building-environment thermal interactions, were applied to quantify the effect of pavements on the urban thermal environment at multiple scales. It was found that performance of pavements inside the canyon was largely determined by the canyon geometry. In a high-density residential area, modifying pavements had insignificant effect on the wall temperature and building energy consumption. At a regional scale, various pavement types were also found to have a limited cooling effect on land surface temperature and 2-m air temperature for metropolitan Phoenix. In the context of global climate change, the effect of pavement was evaluated in terms of the equivalent CO2 emission. Equivalent CO2 emission offset by reflective pavements in urban canyons was only about 13.9e46.6% of that without building canopies, depending on the canyon geometry. This study revealed the importance of building-environment thermal interactions in determining thermal conditions inside the urban canopy.

ContributorsYang, Jiachuan (Author) / Wang, Zhi-Hua (Author) / Kaloush, Kamil (Author) / Dylla, Heather (Author)
Created2016-08-22
149502-Thumbnail Image.png
Description
Oxidative aging is an important factor in the long term performance of asphalt pavements. Oxidation and the associated stiffening can lead to cracking, which in turn can lead to the functional and structural failure of the pavement system. Therefore, a greater understanding of the nature of oxidative aging in asphalt

Oxidative aging is an important factor in the long term performance of asphalt pavements. Oxidation and the associated stiffening can lead to cracking, which in turn can lead to the functional and structural failure of the pavement system. Therefore, a greater understanding of the nature of oxidative aging in asphalt pavements can potentially be of great importance in estimating the performance of a pavement before it is constructed. Of particular interest are the effects of aging on asphalt rubber pavements, due to the fact that, as a newer technology, few asphalt rubber pavement sections have been evaluated for their full service life. This study endeavors to shed some light on this topic. This study includes three experimental programs on the aging of asphalt rubber binders and mixtures. The first phase addresses aging in asphalt rubber binders and their virgin bases. The binders were subjected to various aging conditions and then tested for viscosity. The change in viscosity was analyzed and it was found that asphalt rubber binders exhibited less long term aging. The second phase looks at aging in a laboratory environment, including both a comparison of accelerated oxidative aging techniques and aging effects that occur during long term storage. Dynamic modulus was used as a tool to assess the aging of the tested materials. It was found that aging materials in a compacted state is ideal, while aging in a loose state is unrealistic. Results not only showed a clear distinction in aged versus unaged material but also showed that the effects of aging on AR mixes is highly dependant on temperature; lower temperatures induce relatively minor stiffening while higher temperatures promote much more significant aging effects. The third experimental program is a field study that builds upon a previous study of pavement test sections. Field pavement samples were taken and tested after being in service for 7 years and tested for dynamic modulus and beam fatigue. As with the laboratory aging, the dynamic modulus samples show less stiffening at low temperatures and more at higher temperatures. Beam fatigue testing showed not only stiffening but also a brittle behavior.
ContributorsReed, Jordan (Author) / Kaloush, Kamil (Thesis advisor) / Mamlouk, Michael (Committee member) / Zapata, Claudia (Committee member) / Arizona State University (Publisher)
Created2010