Matching Items (23)
134156-Thumbnail Image.png
Description
Vitellogenin (vg) is a precursor protein of egg yolk in honeybees, but it is also known to have immunological functions. The purpose of this experiment was to determine the effect of vg on the viral load of deformed wing virus (DWV) in worker honey bees (Apis mellifera). I hypothesized that

Vitellogenin (vg) is a precursor protein of egg yolk in honeybees, but it is also known to have immunological functions. The purpose of this experiment was to determine the effect of vg on the viral load of deformed wing virus (DWV) in worker honey bees (Apis mellifera). I hypothesized that a reduction in vg expression would lead to an increase in the viral load. I collected 180 worker bees and split them into four groups: half the bees were subjected to a vg gene knockdown by injections of double stranded vg RNA, and the rest were injected with green fluorescent protein (gfp) double stranded RNA. Half of each group was thereafter injected with DWV, and half given a sham injection. The rate of mortality in all four groups was higher than expected, leaving only 17 bees total. I dissected these bees' fat bodies and extracted their RNA to test for vg and DWV. PCR results showed that, out of the small group of remaining bees, the levels of vg were not statistically different. Furthermore, both groups of virus-injected bees showed similar viral loads. Because of the high mortality rate bees and the lack of differing levels of vg transcript between experimental and control groups, I could not draw conclusions from these results. The high mortality could be caused by several factors: temperature-induced stress, repeated stress from the two injections, and stress from viral infection. In addition, it is possible that the vg dsRNA batch I used was faulty. This thesis exemplifies that information cannot safely be extracted when loss of sampling units result in a small datasets that do not represent the original sampling population.
ContributorsCrable, Emma Lewis (Author) / Amdam, Gro (Thesis director) / Wang, Ying (Committee member) / Dahan, Romain (Committee member) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2017-12
133777-Thumbnail Image.png
Description
The purpose of this experiment was to test how different nutrition supplementation would affect honey bee lifespan. The use of sugar syrup and pollen as well as protein, probiotic, and vitamin supplement were the independent variables in this experiment. The average lifespan of a honey bee (Apis mellifera) is around

The purpose of this experiment was to test how different nutrition supplementation would affect honey bee lifespan. The use of sugar syrup and pollen as well as protein, probiotic, and vitamin supplement were the independent variables in this experiment. The average lifespan of a honey bee (Apis mellifera) is around 30 days depending on climate and time of year (Amdam & Omholt, 2002). This experiment yielded results that would require further testing but was able to conclude that a diet of sugar syrup is not sufficient for honey bees, whereas pollen and probiotic supplement showed positive effects on average lifespan. Protein supplement showed no statistically significant advantage or disadvantage to pollen when it comes to short term supplementation. Considering the importance of nutrition on honey bee lifespan, this paper also explores specific ways legislation can aid in pollinator population decline, considering the impacts of colonies without access to a healthy diet.
ContributorsKalamchi, Dena (Author) / Woodall, Gina (Thesis director) / Kaftanoglu, Osman (Committee member) / School of Politics and Global Studies (Contributor) / Sanford School of Social and Family Dynamics (Contributor) / Sandra Day O'Connor College of Law (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
134942-Thumbnail Image.png
Description
Division of labor is a hallmark for social insects and is closely related to honey bee morphology and physiology. Vitellogenin (Vg), a precursor protein in insect egg yolk, has several known functions apart from serving as a nutrient source for developing eggs. Vg is a component in the royal jelly

Division of labor is a hallmark for social insects and is closely related to honey bee morphology and physiology. Vitellogenin (Vg), a precursor protein in insect egg yolk, has several known functions apart from serving as a nutrient source for developing eggs. Vg is a component in the royal jelly produced in the hypopharyngeal glands (HPG) of worker bees which is used to feed both the developing brood and the queen. The HPG is closely associated with divisions of labor as the peak in its development corresponds with the nursing behavior. Independent of the connection between Vg and the HPG, Vg has been seen to play a fundamental role in divisions of labor by affecting worker gustatory responses, age of onset of foraging, and foraging preferences. Similar to Vg, the number of ovarioles in worker ovaries is also associated with division of labor as bees with more ovarioles tend to finish tasks in the hive and become foragers faster. This experiment aims to connect HPGs, ovaries, and Vg by proposing a link between them in the form of ecdysone (20E). 20E is a hormone produced by the ovaries and is linked to ovary development and Vg by tyramine titers. By treating young emerged bees with ecdysone and measuring HPG and ovary development over a trial period, this experiment seeks to determine whether 20E affects division of labor through Vg. We found that though the stress of injection caused a significant decrease in development of both the ovaries and HPG, there was no discernable effect of 20E on either of these organs.
ContributorsChin, Elijah Seth (Author) / Wang, Ying (Thesis director) / Page, Robert (Committee member) / Cook, Chelsea (Committee member) / School of Molecular Sciences (Contributor) / W. P. Carey School of Business (Contributor) / Barrett, The Honors College (Contributor)
Created2016-12
135022-Thumbnail Image.png
Description
Animals must learn to ignore stimuli that are irrelevant to survival, a process referred to as latent inhibition. The Amtyr1 gene has been shown through quantitative trait loci mapping to be linked to strong latent inhibition in honey bees. Here we implicate this G-protein coupled receptor for the biogenic amine

Animals must learn to ignore stimuli that are irrelevant to survival, a process referred to as latent inhibition. The Amtyr1 gene has been shown through quantitative trait loci mapping to be linked to strong latent inhibition in honey bees. Here we implicate this G-protein coupled receptor for the biogenic amine tyramine as an important factor underlying this form of learning in honey bees. We show that dsRNA targeted to disrupt the tyramine receptors, specifically affects latent inhibition but not excitatory associative conditioning. Our results therefore identify a distinct reinforcement pathway for latent inhibition in insects.
ContributorsPetersen, Mary Margaret (Author) / Smith, Brian (Thesis director) / Wang, Ying (Committee member) / Sinakevitch, Irina (Committee member) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2016-12
135152-Thumbnail Image.png
Description
Genetic counseling is a medical field that was established in the 1970s, but whose demand is now growing exponentially due to modern genetic technology. We now have the ability to look into the human genetic code, detect the genotype of individuals, and use this knowledge to our benefit. However, Genetic

Genetic counseling is a medical field that was established in the 1970s, but whose demand is now growing exponentially due to modern genetic technology. We now have the ability to look into the human genetic code, detect the genotype of individuals, and use this knowledge to our benefit. However, Genetic testing results in a need for new ethical boundaries to be drawn. The idea of the "best possible conditions" of conceiving a child and whether this child has a right to not know are the two major ethical issues that will be focused on in order to analyze the ethical boundary that needs to be drawn for genetic counseling. In order to analyze these ethical issues, a focus group of Arizona State University students was organized. After producing results for the focus group, there are no true conclusions that can be drawn that applied to all of society. The focus group sample size was too small to produce a broad range of results and the participants were all Arizona State University Undergraduate students. However, it did become apparent that knowledge on these ethical issues is crucial in order to ensure they do not hinder the field of genetic counseling. It is predicted that in order to have the best outcome for the field of genetic counseling, genetic counselors themselves need to draw the ethical boundaries for the issues studied.
ContributorsBarker, Samantha (Author) / Amdam, Gro (Thesis director) / Bang, Christofer (Committee member) / Wang, Ying (Committee member) / Barrett, The Honors College (Contributor)
Created2016-05
155638-Thumbnail Image.png
Description
Animals must learn to ignore stimuli that are irrelevant to survival, which is a process referred to as ‘latent inhibition’. This process has been shown to be genetically heritable (Latshaw JS, Mazade R, Sinakevitch I, Mustard JA, Gadau J, Smith BH (submitted)). The locus containing the AmTYR1 gene has been

Animals must learn to ignore stimuli that are irrelevant to survival, which is a process referred to as ‘latent inhibition’. This process has been shown to be genetically heritable (Latshaw JS, Mazade R, Sinakevitch I, Mustard JA, Gadau J, Smith BH (submitted)). The locus containing the AmTYR1 gene has been shown through quantitative trait loci mapping to be linked to strong latent inhibition in honey bees. The Smith lab has been able to show a correlation between learning and the AmTYR1 receptor gene through pharmacological inhibition of the receptor. In order to further confirm this finding, experiments were designed to test how honey bees learn with this receptor knocked out. Here this G-protein coupled receptor for the biogenic amine tyramine is implemented as an important factor underlying latent inhibition in honey bees. It is shown that double-stranded RNA (dsRNA) and Dicer-substrate small interfering RNA (dsiRNA) that are targeted to disrupt the tyramine receptors specifically affects latent inhibition but not excitatory associative conditioning. The results therefore identify a distinct reinforcement pathway for latent inhibition in insects.
ContributorsPetersen, Mary Margaret (Author) / Smith, Brian H. (Thesis advisor) / Wang, Ying (Committee member) / Neisewander, Janet (Committee member) / Sinakavich, Irina (Committee member) / Arizona State University (Publisher)
Created2017
170043-Thumbnail Image.png
Description

We analyze current approaches to carbon accounting for removed carbon sold on carbon markets, focusing on carbon crediting under the framing of a remaining carbon budget, the issue of durability, and approaches to accounting methodologies. We explore the topic of mixing carbon with other problems in developing carbon accounting methodologies

We analyze current approaches to carbon accounting for removed carbon sold on carbon markets, focusing on carbon crediting under the framing of a remaining carbon budget, the issue of durability, and approaches to accounting methodologies. We explore the topic of mixing carbon with other problems in developing carbon accounting methodologies and highlight the open policy questions. We conclude with a suggested framework for accounting for carbon removal accounting that simplifies climate action and enables a world with negative carbon emissions.

ContributorsArcusa, Stéphanie (Author) / Lackner, Klaus (Author) / Page, Robert (Author) / Sriramprasad, Vishrudh (Author) / Hagood, Emily (Author) / Center for Negative Carbon Emissions (Contributor)
Created2022-11-01
172390-Thumbnail Image.png
Description

This document details a conceptual Framework for the Certification of Carbon Sequestration (FCCS). It is based on a system designed to support negative emissions. It provides the minimum requirements for the development of carbon sequestration standards and certificates of carbon sequestration. It allows the certification of standards so that they

This document details a conceptual Framework for the Certification of Carbon Sequestration (FCCS). It is based on a system designed to support negative emissions. It provides the minimum requirements for the development of carbon sequestration standards and certificates of carbon sequestration. It allows the certification of standards so that they in turn produce certification of removed carbon that authenticates durability and verifiability. The framework (i) identifies an organizational structure for the certification system, (ii) clarifies the responsibility of participating entities, (iii) provides certificate designs and usages, (iv) details the requirements to develop measurement protocols, (v) provides mechanisms to support a long-term industry, and (vi) outlines a vision towards durable storage.

ContributorsArcusa, Stéphanie (Author) / Lackner, Klaus (Author) / Hagood, Emily (Author) / Page, Robert (Author) / Sriramprasad, Vishrudh (Author)
Created2022-12-05
161743-Thumbnail Image.png
Description
The living world is replete with easily observed structural adaptations (e.g. teeth, claws, and stingers), but behavioral adaptations are no less impressive. Conspecific aggression can be defined as any harmful action directed by one animal at another of the same species. Because it is a potentially risky and costly behavior,

The living world is replete with easily observed structural adaptations (e.g. teeth, claws, and stingers), but behavioral adaptations are no less impressive. Conspecific aggression can be defined as any harmful action directed by one animal at another of the same species. Because it is a potentially risky and costly behavior, aggression should be elicited only under optimal conditions. In honeybees, nestmate recognition is considered the driving factor determining whether colony guards will aggress against other honeybees attempting to gain entry to the colony. Models and empirical research support the conclusion that nestmate recognition should be favored over direct kin recognition. Thus, bees tend to use environmentally mediated cues associated with their colonies (e.g. colony odors) to recognize nestmates. The framework of nestmate recognition suggests that non-nestmates should always be aggressed against while nestmates should always be accepted. However, aggression towards nestmates and acceptance of non-nestmates are seen in a wide variety of eusocial insects, including honeybees. These are typically classified as rejection errors and acceptance errors, respectively. As such, they can be explained using signal detection theory and optimal acceptance threshold models, which postulate that recognition errors are inevitable if there is overlap in the cues used to distinguish “desirables” (fitness-enhancing) from “undesirables” (fitness-decrementing) conspecifics. In the context of social insects desirables are presumed to be nestmates and undesirables are presumed to be non-nestmates. I propose that honeybees may make more refined decisions concerning what conspecifics are desirable and undesirable, accounting for at least some of the phenomena previously reported as recognition errors. Some “errors” may be the result of guard bees responding to cues associated with threats and benefits beyond nestmate identity. I show that less threatening neighbors receive less aggression than highly threatening strangers. I show that well-fed colonies exhibit less aggression and that bees from well-fed colonies receive less aggression. I provide evidence that honeybees may decrease aggression towards nestmates and non-nestmate not involved in robbing while increasing aggression towards non-nestmate from a robber colony. Lastly, I show that pollen bearing foragers, regardless of nestmate identity, receive little to no aggression compared to non-pollen bearing foragers.
ContributorsJackson, Jonathan Cole (Author) / Pratt, Stephen (Thesis advisor) / Rutowski, Ronald (Committee member) / Fewell, Jennifer (Committee member) / Amazeen, Nia (Committee member) / Kaftanoglu, Osman (Committee member) / Arizona State University (Publisher)
Created2021