Matching Items (136)
154306-Thumbnail Image.png
Description
Charge transport in molecular systems, including DNA (Deoxyribonucleic acid), is involved in many basic chemical and biological processes. Studying their charge transport properties can help developing DNA based electronic devices with many tunable functionalities. This thesis investigates the electric properties of double-stranded DNA, DNA G-quadruplex and dsDNA with modified base.

First,

Charge transport in molecular systems, including DNA (Deoxyribonucleic acid), is involved in many basic chemical and biological processes. Studying their charge transport properties can help developing DNA based electronic devices with many tunable functionalities. This thesis investigates the electric properties of double-stranded DNA, DNA G-quadruplex and dsDNA with modified base.

First, double-stranded DNA with alternating GC sequence and stacked GC sequence were measured with respect to length. The resistance of DNA sequences increases linearly with length, indicating a hopping transport mechanism. However, for DNA sequences with stacked GC, a periodic oscillation is superimposed on the linear length dependence, indicating a partial coherent transport. The result is supported by the finding of delocalization of the highest occupied molecular orbitals of Guanines from theoretical simulation and by fitting based on the Büttiker’s theory.

Then, a DNA G4-duplex structures with a G-quadruplex as the core and DNA duplexes as the arms were studied. Similar conductance values were observed by varying the linker positions, thus a charge splitter is developed. The conductance of the DNA G-tetrads structures was found to be sensitive to the π-stacking at the interface between the G-quadruplex and DNA duplexes by observing a higher conductance value when one duplex was removed and a polyethylene glycol (PEG) linker was added into the interface. This was further supported by molecular dynamic simulations.

Finally, a double-stranded DNA with one of the bases replaced by an anthraquinone group was studied via electrochemical STM break junction technique. Anthraquinone can be reversibly switched into the oxidized state or reduced state, to give a low conductance or high conductance respectively. Furthermore, the thermodynamics and kinetics properties of the switching were systematically studied. Theoretical simulation shows that the difference between the two states is due to a difference in the energy alignment with neighboring Guanine bases.
ContributorsXiang, Liming (Author) / Tao, Nongjian (Thesis advisor) / Lindsay, Stuart (Committee member) / Gould, Ian (Committee member) / Arizona State University (Publisher)
Created2016
153997-Thumbnail Image.png
Description
Detection of molecular interactions is critical for understanding many biological processes, for detecting disease biomarkers, and for screening drug candidates. Fluorescence-based approach can be problematic, especially when applied to the detection of small molecules. Various label-free techniques, such as surface plasmon resonance technique are sensitive to mass, making it extremely

Detection of molecular interactions is critical for understanding many biological processes, for detecting disease biomarkers, and for screening drug candidates. Fluorescence-based approach can be problematic, especially when applied to the detection of small molecules. Various label-free techniques, such as surface plasmon resonance technique are sensitive to mass, making it extremely challenging to detect small molecules. In this thesis, novel detection methods for molecular interactions are described.

First, a simple detection paradigm based on reflectance interferometry is developed. This method is simple, low cost and can be easily applied for protein array detection.

Second, a label-free charge sensitive optical detection (CSOD) technique is developed for detecting of both large and small molecules. The technique is based on that most molecules relevant to biomedical research and applications are charged or partially charged. An optical fiber is dipped into the well of a microplate. It detects the surface charge of the fiber, which does not decrease with the size (mass) of the molecule, making it particularly attractive for studying small molecules.

Third, a method for mechanically amplification detection of molecular interactions (MADMI) is developed. It provides quantitative analysis of small molecules interaction with membrane proteins in intact cells. The interactions are monitored by detecting a mechanical deformation in the membrane induced by the molecular interactions. With this novel method small molecules and membrane proteins interaction in the intact cells can be detected. This new paradigm provides mechanical amplification of small interaction signals, allowing us to measure the binding kinetics of both large and small molecules with membrane proteins, and to analyze heterogeneous nature of the binding kinetics between different cells, and different regions of a single cell.

Last, by tracking the cell membrane edge deformation, binding caused downstream event – granule secretory has been measured. This method focuses on the plasma membrane change when granules fuse with the cell. The fusion of granules increases the plasma membrane area and thus the cell edge expands. The expansion is localized at the vesicle release location. Granule size was calculated based on measured edge expansion. The membrane deformation due to the granule release is real-time monitored by this method.
ContributorsGuan, Yan (Author) / Tao, Nongjian (Thesis advisor) / LaBaer, Joshua (Committee member) / Goryll, Michael (Committee member) / Wang, Shaopeng (Committee member) / Arizona State University (Publisher)
Created2015
152919-Thumbnail Image.png
Description
Monitoring of air pollutants is critical for many applications and studies. In

order to access air pollutants with high spatial and temporal resolutions, it is

necessary

Monitoring of air pollutants is critical for many applications and studies. In

order to access air pollutants with high spatial and temporal resolutions, it is

necessary to develop an affordable, small size and weight, low power, high

sensitivity and selectivity, and wireless enable device that can provide real time

monitoring of air pollutants. Three different kind of such devices are presented, they

are targeting environmental pollutants such as volatile organic components (VOCs),

nitrogen dioxide (NO2) and ozone. These devices employ innovative detection

methods, such as quartz crystal tuning fork coated with molecularly imprinted

polymer and chemical reaction induced color change colorimetric sensing. These

portable devices are validated using the gold standards in the laboratory, and their

functionality and capability are proved during the field tests, make them great tools

for various air quality monitoring applications.
ContributorsChen, Cheng, Ph.D (Author) / Tao, Nongjian (Thesis advisor) / Kiaei, Sayfe (Committee member) / Zhang, Yanchao (Committee member) / Tsow, Tsing (Committee member) / Arizona State University (Publisher)
Created2014
152522-Thumbnail Image.png
Description
Wide spread adoption of photovoltaic technology is limited by cost. Developing photovoltaics based on low-cost materials and processing techniques is one strategy for reducing the cost of electricity generated by photovoltaics. With this in mind, novel porphyrin and porphyrin-fullerene electropolymers have been developed here at Arizona State University. Porphyrins are

Wide spread adoption of photovoltaic technology is limited by cost. Developing photovoltaics based on low-cost materials and processing techniques is one strategy for reducing the cost of electricity generated by photovoltaics. With this in mind, novel porphyrin and porphyrin-fullerene electropolymers have been developed here at Arizona State University. Porphyrins are attractive for inclusion in the light absorbing layer of photovoltaics due to their high absorption coefficients (on the order of 105 cm-1) and porphyrin-fullerene dyads are attractive for use in photovoltaics due to their ability to produce ultrafast photoinduced charge separation (on the order of 10-15 s). The focus of this thesis is the characterization of the photovoltaic properties of these electropolymer films. Films formed on transparent conductive oxide (TCO) substrates were contacted using a mercury drop electrode in order to measure photocurrent spectra and current-voltage curves. Surface treatment of both the TCO substrate and the mercury drop is shown to have a dramatic effect on the photovoltaic performance of the electropolymer films. Treating the TCO substrates with chlorotrimethylsilane and the mercury drop with hexanethiol was found to produce an optimal tradeoff between photocurrent and photovoltage. Incident photon to current efficiency spectra of the films show that the dominant photocurrent generation mechanism in this system is located at the polymer-mercury interface. The optical field intensity at this interface approaches zero due to interference from the light reflected by the mercury surface. Reliance upon photocurrent generation at this interface limits the performance of this system and suggests that these polymers may be useful in solar cells which have structures optimized to take advantage of their internal optical field distributions.
ContributorsBridgewater, James W (Author) / Gust, Devens (Thesis advisor) / Tao, Nongjian (Thesis advisor) / Gould, Ian (Committee member) / Diaz, Rodolfo (Committee member) / Arizona State University (Publisher)
Created2014
153071-Thumbnail Image.png
Description
Understanding the interplay between the electrical and mechanical properties of single molecules is of fundamental importance for molecular electronics. The sensitivity of charge transport to mechanical fluctuations is a key problem in developing long lasting molecular devices. Furthermore, harnessing this response to mechanical perturbation, molecular devices which can be mechanically

Understanding the interplay between the electrical and mechanical properties of single molecules is of fundamental importance for molecular electronics. The sensitivity of charge transport to mechanical fluctuations is a key problem in developing long lasting molecular devices. Furthermore, harnessing this response to mechanical perturbation, molecular devices which can be mechanically gated can be developed. This thesis demonstrates three examples of the unique electromechanical properties of single molecules.

First, the electromechanical properties of 1,4-benzenedithiol molecular junctions are investigate. Counterintuitively, the conductance of this molecule is found to increase by more than an order of magnitude when stretched. This conductance increase is found to be reversible when the molecular junction is compressed. The current-voltage, conductance-voltage and inelastic electron tunneling spectroscopy characteristics are used to attribute the conductance increase to a strain-induced shift in the frontier molecular orbital relative to the electrode Fermi level, leading to resonant enhancement in the conductance.

Next, the effect of stretching-induced structural changes on charge transport in DNA molecules is studied. The conductance of single DNA molecules with lengths varying from 6 to 26 base pairs is measured and found to follow a hopping transport mechanism. The conductance of DNA molecules is highly sensitive to mechanical stretching, showing an abrupt decrease in conductance at surprisingly short stretching distances, with weak dependence on DNA length. This abrupt conductance decrease is attributed to force-induced breaking of hydrogen bonds in the base pairs at the end of the DNA sequence.

Finally, the effect of small mechanical modulation of the base separation on DNA conductance is investigated. The sensitivity of conductance to mechanical modulation is studied for molecules of different sequence and length. Sequences with purine-purine stacking are found to be more responsive to modulation than purine-pyrimidine sequences. This sensitivity is attributed to the perturbation of &pi-&pi stacking interactions and resulting effects on the activation energy and electronic coupling for the end base pairs.
ContributorsBruot, Christopher, 1986- (Author) / Tao, Nongjian (Thesis advisor) / Lindsay, Stuart (Committee member) / Mujica, Vladimiro (Committee member) / Ferry, David (Committee member) / Arizona State University (Publisher)
Created2014
155174-Thumbnail Image.png
Description
Monitoring vital physiological signals, such as heart rate, blood pressure and breathing pattern, are basic requirements in the diagnosis and management of various diseases. Traditionally, these signals are measured only in hospital and clinical settings. An important recent trend is the development of portable devices for tracking these physiological signals

Monitoring vital physiological signals, such as heart rate, blood pressure and breathing pattern, are basic requirements in the diagnosis and management of various diseases. Traditionally, these signals are measured only in hospital and clinical settings. An important recent trend is the development of portable devices for tracking these physiological signals non-invasively by using optical methods. These portable devices, when combined with cell phones, tablets or other mobile devices, provide a new opportunity for everyone to monitor one’s vital signs out of clinic.

This thesis work develops camera-based systems and algorithms to monitor several physiological waveforms and parameters, without having to bring the sensors in contact with a subject. Based on skin color change, photoplethysmogram (PPG) waveform is recorded, from which heart rate and pulse transit time are obtained. Using a dual-wavelength illumination and triggered camera control system, blood oxygen saturation level is captured. By monitoring shoulder movement using differential imaging processing method, respiratory information is acquired, including breathing rate and breathing volume. Ballistocardiogram (BCG) is obtained based on facial feature detection and motion tracking. Blood pressure is further calculated from simultaneously recorded PPG and BCG, based on the time difference between these two waveforms.

The developed methods have been validated by comparisons against reference devices and through pilot studies. All of the aforementioned measurements are conducted without any physical contact between sensors and subjects. The work presented herein provides alternative solutions to track one’s health and wellness under normal living condition.
ContributorsShao, Dangdang (Author) / Tao, Nongjian (Thesis advisor) / Li, Baoxin (Committee member) / Hekler, Eric (Committee member) / Karam, Lina (Committee member) / Arizona State University (Publisher)
Created2016
155525-Thumbnail Image.png
Description
Studying charge transport through single molecules is of great importance for unravelling charge transport mechanisms, investigating fundamentals of chemistry, and developing functional building blocks in molecular electronics.

First, a study of the thermoelectric effect in single DNA molecules is reported. By varying the molecular length and sequence, the charge transport in

Studying charge transport through single molecules is of great importance for unravelling charge transport mechanisms, investigating fundamentals of chemistry, and developing functional building blocks in molecular electronics.

First, a study of the thermoelectric effect in single DNA molecules is reported. By varying the molecular length and sequence, the charge transport in DNA was tuned to either a hopping- or tunneling-dominated regimes. In the hopping regime, the thermoelectric effect is small and insensitive to the molecular length. Meanwhile, in the tunneling regime, the thermoelectric effect is large and sensitive to the length. These findings indicate that by varying its sequence and length, the thermoelectric effect in DNA can be controlled. The experimental results are then described in terms of hopping and tunneling charge transport models.

Then, I showed that the electron transfer reaction of a single ferrocene molecule can be controlled with a mechanical force. I monitor the redox state of the molecule from its characteristic conductance, detect the switching events of the molecule from reduced to oxidized states with the force, and determine a negative shift of ~34 mV in the redox potential under force. The theoretical modeling is in good agreement with the observations, and reveals the role of the coupling between the electronic states and structure of the molecule.

Finally, conclusions and perspectives were discussed to point out the implications of the above works and future studies that can be performed based on the findings.
ContributorsLi, Yueqi, Ph.D (Author) / Tao, Nongjian (Thesis advisor) / Buttry, Daniel (Committee member) / Mujica, Vladimiro (Committee member) / Arizona State University (Publisher)
Created2017
155688-Thumbnail Image.png
Description
Antibiotic resistant bacteria are a worldwide epidemic threatening human survival. Antimicrobial susceptibility tests (ASTs) are important for confirming susceptibility to empirical antibiotics and detecting resistance in bacterial isolates. Current ASTs are based on bacterial culturing, which take 2-14 days to complete depending on the microbial growth rate. Considering the high

Antibiotic resistant bacteria are a worldwide epidemic threatening human survival. Antimicrobial susceptibility tests (ASTs) are important for confirming susceptibility to empirical antibiotics and detecting resistance in bacterial isolates. Current ASTs are based on bacterial culturing, which take 2-14 days to complete depending on the microbial growth rate. Considering the high mortality and morbidity rates for most acute infections, such long time frames are clinically impractical and pose a huge risk to a patient's life. A faster AST will reduce morbidity and mortality rates, as well as help healthcare providers, administer narrow spectrum antibiotics at the earliest possible treatment stage.

In this dissertation, I developed a nonculture-based AST using an imaging and cell tracking technology. I track individual Escherichia coli O157:H7 (E. coli O157:H7) Uropathogenic Escherichia Coli (UPEC) cells, widely implicated in food-poisoning outbreaks and urinary tract infections respectively. Cells tethered to a surface are tracked on the nanometer scale, and phenotypic motion is correlated with bacterial metabolism. Antibiotic action significantly slows down motion of tethered bacterial cells, which is used to perform antibiotic susceptibility testing. Using this technology, the clinical minimum bactericidal concentration of an antibiotic against UPEC pathogens was calculated within 2 hours directly in urine samples as compared to 3 days using current gold standard tools.

Such technologies can make a tremendous impact to improve the efficacy and efficiency of infectious disease treatment. This has the potential to reduce the antibiotic mis-prescription steeply, which can drastically decrease the annual 2M+ hospitalizations and 23,000+ deaths caused due to antibiotic resistance bacteria along with saving billions of dollars to payers, patients, and hospitals.
ContributorsSyal, Karan (Author) / Tao, Nongjian (Thesis advisor) / Haydel, Shelley (Committee member) / Rege, Kaushal (Committee member) / Wang, Shaopeng (Committee member) / Haynes, Karmella (Committee member) / Arizona State University (Publisher)
Created2017
155489-Thumbnail Image.png
Description
In this thesis, a breadboard Integrated Microarray Printing and Detection System (IMPDS) was proposed to address key limitations of traditional microarrays. IMPDS integrated two core components of a high-resolution surface plasmon resonance imaging (SPRi) system and a piezoelectric dispensing system that can print ultra-low volume droplets. To avoid evaporation of

In this thesis, a breadboard Integrated Microarray Printing and Detection System (IMPDS) was proposed to address key limitations of traditional microarrays. IMPDS integrated two core components of a high-resolution surface plasmon resonance imaging (SPRi) system and a piezoelectric dispensing system that can print ultra-low volume droplets. To avoid evaporation of droplets in the microarray, a 100 μm thick oil layer (dodecane) was used to cover the chip surface. The interaction between BSA (Bovine serum albumin) and Anti-BSA was used to evaluate the capability of IMPDS. The alignment variability of printing, stability of droplets array and quantification of protein-protein interactions based on nanodroplet array were evaluated through a 10 x 10 microarray on SPR sensor chip. Binding kinetic constants obtained from IMPDS are close with results from commercial SPR setup (BI-3000), which indicates that IMPDS is capable to measure kinetic constants accurately. The IMPDS setup has following advantages: 1) nanoliter scale sample consumption, 2) high-throughput detection with real-time kinetic information for biomolecular interactions, 3) real-time information during printing and spot-on-spot detection of biomolecular interactions 4) flexible selection of probes and receptors (M x N interactions). Since IMPDS studies biomolecular interactions with low cost and high flexibility in real-time manner, it has great potential in applications such as drug discovery, food safety and disease diagnostics, etc.
ContributorsXiao, Feng (Author) / Tao, Nongjian (Thesis advisor) / Borges, Chad (Committee member) / Guo, Jia (Committee member) / Arizona State University (Publisher)
Created2017
156025-Thumbnail Image.png
Description
Sustainability depends in part on our capacity to resolve dilemmas of the commons in Coupled Infrastructure Systems (CIS). Thus, we need to know more about how to incentivize individuals to take collective action to manage shared resources. Moreover, given that we will experience new and more extreme weather events due

Sustainability depends in part on our capacity to resolve dilemmas of the commons in Coupled Infrastructure Systems (CIS). Thus, we need to know more about how to incentivize individuals to take collective action to manage shared resources. Moreover, given that we will experience new and more extreme weather events due to climate change, we need to learn how to increase the robustness of CIS to those shocks. This dissertation studies irrigation systems to contribute to the development of an empirically based theory of commons governance for robust systems. I first studied the eight institutional design principles (DPs) for long enduring systems of shared resources that the Nobel Prize winner Elinor Ostrom proposed in 1990. I performed a critical literature review of 64 studies that looked at the institutional configuration of CIS, and based on my findings I propose some modifications of their definitions and application in research and policy making. I then studied how the revisited design principles, when analyzed conjointly with biophysical and ethnographic characteristics of CISs, perform to avoid over-appropriation, poverty and critical conflicts among users of an irrigation system. After carrying out a meta-analysis of 28 cases around the world, I found that particular combinations of those variables related to population size, countries corruption, the condition of water storage, monitoring of users behavior, and involving users in the decision making process for the commons governance, were sufficient to obtain the desired outcomes. The two last studies were based on the Peruvian Piura Basin, a CIS that has been exposed to environmental shocks for decades. I used secondary and primary data to carry out a longitudinal study using as guidance the robustness framework, and different hypothesis from prominent collapse theories to draw potential explanations. I then developed a dynamic model that shows how at the current situation it is more effective to invest in rules enforcement than in the improvement of the physical infrastructure (e.g. reservoir). Finally, I explored different strategies to increase the robustness of the system, through enabling collective action in the Basin.
ContributorsRubinos, Cathy (Author) / Anderies, John M (Thesis advisor) / Abbott, Joshua K (Committee member) / Janssen, Marcus A (Committee member) / Arizona State University (Publisher)
Created2017