Matching Items (161)
Description
Filtration for microfluidic sample-collection devices is desirable for sample selection, concentration, preprocessing, and downstream manipulation, but microfabricating the required sub-micrometer filtration structure is an elaborate process. This thesis presents a simple method to fabricate polydimethylsiloxane (PDMS) devices with an integrated membrane filter that will sample, lyse, and extract the DNA

Filtration for microfluidic sample-collection devices is desirable for sample selection, concentration, preprocessing, and downstream manipulation, but microfabricating the required sub-micrometer filtration structure is an elaborate process. This thesis presents a simple method to fabricate polydimethylsiloxane (PDMS) devices with an integrated membrane filter that will sample, lyse, and extract the DNA from microorganisms in aqueous environments. An off-the-shelf membrane filter disc was embedded in a PDMS layer and sequentially bound with other PDMS channel layers. No leakage was observed during filtration. This device was validated by concentrating a large amount of cyanobacterium Synechocystis in simulated sample water with consistent performance across devices. After accumulating sufficient biomass on the filter, a sequential electrochemical lysing process was performed by applying 5VDC across the filter. This device was further evaluated by delivering several samples of differing concentrations of cyanobacterium Synechocystis then quantifying the DNA using real-time PCR. Lastly, an environmental sample was run through the device and the amount of photosynthetic microorganisms present in the water was determined. The major breakthroughs in this design are low energy demand, cheap materials, simple design, straightforward fabrication, and robust performance, together enabling wide-utility of similar chip-based devices for field-deployable operations in environmental micro-biotechnology.
ContributorsLecluse, Aurelie (Author) / Meldrum, Deirdre (Thesis advisor) / Chao, Joseph (Thesis advisor) / Westerhoff, Paul (Committee member) / Arizona State University (Publisher)
Created2011
Description
Single cell phenotypic heterogeneity studies reveal more information about the pathogenesis process than conventional bulk methods. Furthermore, investigation of the individual cellular response mechanism during rapid environmental changes can only be achieved at single cell level. By enabling the study of cellular morphology, a single cell three-dimensional (3D) imaging system

Single cell phenotypic heterogeneity studies reveal more information about the pathogenesis process than conventional bulk methods. Furthermore, investigation of the individual cellular response mechanism during rapid environmental changes can only be achieved at single cell level. By enabling the study of cellular morphology, a single cell three-dimensional (3D) imaging system can be used to diagnose fatal diseases, such as cancer, at an early stage. One proven method, CellCT, accomplishes 3D imaging by rotating a single cell around a fixed axis. However, some existing cell rotating mechanisms require either intricate microfabrication, and some fail to provide a suitable environment for living cells. This thesis develops a microvorterx chamber that allows living cells to be rotated by hydrodynamic alone while facilitating imaging access. In this thesis work, 1) the new chamber design was developed through numerical simulation. Simulations revealed that in order to form a microvortex in the side chamber, the ratio of the chamber opening to the channel width must be smaller than one. After comparing different chamber designs, the trapezoidal side chamber was selected because it demonstrated controllable circulation and met the imaging requirements. Microvortex properties were not sensitive to the chambers with interface angles ranging from 0.32 to 0.64. A similar trend was observed when chamber heights were larger than chamber opening. 2) Micro-particle image velocimetry was used to characterize microvortices and validate simulation results. Agreement between experimentation and simulation confirmed that numerical simulation was an effective method for chamber design. 3) Finally, cell rotation experiments were performed in the trapezoidal side chamber. The experimental results demonstrated cell rotational rates ranging from 12 to 29 rpm for regular cells. With a volumetric flow rate of 0.5 µL/s, an irregular cell rotated at a mean rate of 97 ± 3 rpm. Rotational rates can be changed by altering inlet flow rates.
ContributorsZhang, Wenjie (Author) / Frakes, David (Thesis advisor) / Meldrum, Deirdre (Thesis advisor) / Chao, Shih-hui (Committee member) / Wang, Xiao (Committee member) / Arizona State University (Publisher)
Created2011
149747-Thumbnail Image.png
Description
Since the Convention on Biological Diversity was established in 1992, more importance has been given to the conservation of genetic resources in the international community. In 2001, the International Treaty on Plant Genetic Resources for Food and Agriculture (PGRFA) focused on conserving plant genetic resources, including crop wild relatives (CWR).

Since the Convention on Biological Diversity was established in 1992, more importance has been given to the conservation of genetic resources in the international community. In 2001, the International Treaty on Plant Genetic Resources for Food and Agriculture (PGRFA) focused on conserving plant genetic resources, including crop wild relatives (CWR). Some of these genetic resources hold desirable traits--such as transfer of plant disease resistance, improvement of nutritional content, or increased resistance to climate change--that can improve commercial crops. For many years, ex situex situ conservation was the prevalent form of protecting plant genetic resources. However, after PGRFA was published in 1998, in situ techniques have increasingly been applied to conserve wild relatives and enhance domesticated crops.In situ techniques are preferred when possible, since they allow for continued evolution of traits through natural selection, and viability of seed stock through continuous germination and regeneration. In my research, I identified regions in Bolivia and rated them according to their potential for successful programs of iin situ conservation of wild crop relatives. In particular, I analyzed areas according to the following criteria: a) The prevalence of CWRs. b) The impacts of climate change, land use change, population growth, and economic development on the continued viability of CWRs in an area. c) The socio-political and economic conditions that might impede or facilitate successful conservation programs and outcomes. This work focuses on three genera of particular importance in Bolivia: Peanut (Arachis spp.), Potato (Solanum spp.) and Quinoa (Chenopodium spp.). I analyzed the above factors for each municipality in Bolivia (the smallest scale for which appropriate data were available). The results indicate which municipalities are most likely to successfully engage in CWR conservation projects. Finally, I present guidelines for the creation of conservation projects that pinpoint some of the potential risks and difficulties with in situ conservation programs in Bolivia and more generally.
ContributorsGonzalez-Paredes, Cecilia (Author) / Kinzig, Ann (Thesis advisor) / Aggarwal, Rimjhim (Committee member) / Chhetri, Netra (Committee member) / Arizona State University (Publisher)
Created2011
137615-Thumbnail Image.png
Description
More than 90 million Americans suffer from low health literacy levels that can lead to detrimental health practices. One of the greatest issues stemming from low health literacy is the misuse of medication, which results in 125,000 deaths per year and close to $200 billion dollars in health care funds

More than 90 million Americans suffer from low health literacy levels that can lead to detrimental health practices. One of the greatest issues stemming from low health literacy is the misuse of medication, which results in 125,000 deaths per year and close to $200 billion dollars in health care funds (Ngoh 2009). With their implementation into neighborhood settings and consequently the everyday lives of individuals, pharmacies show potential in being great assets towards increasing health literacy on an individual and societal level. However, pharmacists must first be made aware of the opportunities and challenges that exist concerning this effort. Through a three step literature review and corresponding comparative analysis, the results of this study show that pharmacists should focus on four main areas: overall assessment of health literacy in a pharmacy setting, individualization and tailoring of health/ medication plans, development of verbal and written communication tools, and the pharmacist-patient relationship. Each area presents a set of opportunities and challenges that must be accounted for in order to design more effective initiatives and tools in the pharmacists' aim to increase health literacy.
ContributorsMergens, Rianna Lynn (Author) / Robert, Jason Scott (Thesis director) / Maienschein, Jane (Committee member) / Kinzig, Ann (Committee member) / Barrett, The Honors College (Contributor) / School of Life Sciences (Contributor)
Created2013-05
152066-Thumbnail Image.png
Description
Sustainable urbanism offers a set of best practice planning and design prescriptions intended to reverse the negative environmental consequences of urban sprawl, which dominates new urban development in the United States. Master planned developments implementing sustainable urbanism are proliferating globally, garnering accolades within the planning community and skepticism among social

Sustainable urbanism offers a set of best practice planning and design prescriptions intended to reverse the negative environmental consequences of urban sprawl, which dominates new urban development in the United States. Master planned developments implementing sustainable urbanism are proliferating globally, garnering accolades within the planning community and skepticism among social scientists. Despite attention from supporters and critics alike, little is known about the actual environmental performance of sustainable urbanism. This dissertation addresses the reasons for this paucity of evidence and the capacity of sustainable urbanism to deliver the espoused environmental outcomes through alternative urban design and the conventional master planning framework for development through three manuscripts. The first manuscript considers the reasons why geography, which would appear to be a natural empirical home for research on sustainable urbanism, has yet to accumulate evidence that links design alternatives to environmental outcomes or to explain the social processes that mediate those outcomes. It argues that geography has failed to develop a coherent subfield based on nature-city interactions and suggests interdisciplinary bridging concepts to invigorate greater interaction between the urban and nature-society geographic subfields. The subsequent chapters deploy these bridging concepts to empirically examine case-studies in sustainable urbanism. The second manuscript utilizes fine scale spatial data to quantify differences in ecosystem services delivery across three urban designs in two phases of Civano, a sustainable urbanism planned development in Tucson, Arizona, and an adjacent, typical suburban development comparison community. The third manuscript considers the extent to which conventional master planning processes are fundamentally at odds with urban environmental sustainability through interviews with stakeholders involved in three planned developments: Civano (Tucson, Arizona), Mueller (Austin, Texas), and Prairie Crossing (Grayslake, Illinois). Findings from the three manuscripts reveal deep challenges in conceptualizing an empirical area of inquiry on sustainable urbanism, measuring the outcomes of urban design alternatives, and innovating planning practice within the constraints of existing institutions that facilitate conventional development. Despite these challenges, synthesizing the insights of geography and cognate fields holds promise in building an empirical body of knowledge that complements pioneering efforts of planners to innovate urban planning practice through the sustainable urbanism alternative.
ContributorsTurner, Victoria (Author) / Gober, Patricia (Thesis advisor) / Eakin, Hallie (Committee member) / Kinzig, Ann (Committee member) / Talen, Emily (Committee member) / Arizona State University (Publisher)
Created2013
Description
Laboratory automation systems have seen a lot of technological advances in recent times. As a result, the software that is written for them are becoming increasingly sophisticated. Existing software architectures and standards are targeted to a wider domain of software development and need to be customized in order to use

Laboratory automation systems have seen a lot of technological advances in recent times. As a result, the software that is written for them are becoming increasingly sophisticated. Existing software architectures and standards are targeted to a wider domain of software development and need to be customized in order to use them for developing software for laboratory automation systems. This thesis proposes an architecture that is based on existing software architectural paradigms and is specifically tailored to developing software for a laboratory automation system. The architecture is based on fairly autonomous software components that can be distributed across multiple computers. The components in the architecture make use of asynchronous communication methodologies that are facilitated by passing messages between one another. The architecture can be used to develop software that is distributed, responsive and thread-safe. The thesis also proposes a framework that has been developed to implement the ideas proposed by the architecture. The framework is used to develop software that is scalable, distributed, responsive and thread-safe. The framework currently has components to control very commonly used laboratory automation devices such as mechanical stages, cameras, and also to do common laboratory automation functionalities such as imaging.
ContributorsKuppuswamy, Venkataramanan (Author) / Meldrum, Deirdre (Thesis advisor) / Collofello, James (Thesis advisor) / Sarjoughian, Hessam S. (Committee member) / Johnson, Roger (Committee member) / Arizona State University (Publisher)
Created2012
151177-Thumbnail Image.png
Description
Single cell analysis has become increasingly important in understanding disease onset, progression, treatment and prognosis, especially when applied to cancer where cellular responses are highly heterogeneous. Through the advent of single cell computerized tomography (Cell-CT), researchers and clinicians now have the ability to obtain high resolution three-dimensional (3D) reconstructions of

Single cell analysis has become increasingly important in understanding disease onset, progression, treatment and prognosis, especially when applied to cancer where cellular responses are highly heterogeneous. Through the advent of single cell computerized tomography (Cell-CT), researchers and clinicians now have the ability to obtain high resolution three-dimensional (3D) reconstructions of single cells. Yet to date, no live-cell compatible version of the technology exists. In this thesis, a microfluidic chip with the ability to rotate live single cells in hydrodynamic microvortices about an axis parallel to the optical focal plane has been demonstrated. The chip utilizes a novel 3D microchamber design arranged beneath a main channel creating flow detachment into the chamber, producing recirculating flow conditions. Single cells are flowed through the main channel, held in the center of the microvortex by an optical trap, and rotated by the forces induced by the recirculating fluid flow. Computational fluid dynamics (CFD) was employed to optimize the geometry of the microchamber. Two methods for the fabrication of the 3D microchamber were devised: anisotropic etching of silicon and backside diffuser photolithography (BDPL). First, the optimization of the silicon etching conditions was demonstrated through design of experiment (DOE). In addition, a non-conventional method of soft-lithography was demonstrated which incorporates the use of two positive molds, one of the main channel and the other of the microchambers, compressed together during replication to produce a single ultra-thin (<200 µm) negative used for device assembly. Second, methods for using thick negative photoresists such as SU-8 with BDPL have been developed which include a new simple and effective method for promoting the adhesion of SU-8 to glass. An assembly method that bonds two individual ultra-thin (<100 µm) replications of the channel and the microfeatures has also been demonstrated. Finally, a pressure driven pumping system with nanoliter per minute flow rate regulation, sub-second response times, and < 3% flow variability has been designed and characterized. The fabrication and assembly of this device is inexpensive and utilizes simple variants of conventional microfluidic fabrication techniques, making it easily accessible to the single cell analysis community.
ContributorsMyers, Jakrey R (Author) / Meldrum, Deirdre (Thesis advisor) / Johnson, Roger (Committee member) / Frakes, David (Committee member) / Arizona State University (Publisher)
Created2012
136210-Thumbnail Image.png
Description
Waste generation in the U.S. has reached new heights, but the exploitation of Native American lands for waste disposal is nothing new. Many of the negative effects of massive waste production and toxic pollution, such as poor health outcomes and decreased property values, disproportionately burden impoverished, minority communities inside and

Waste generation in the U.S. has reached new heights, but the exploitation of Native American lands for waste disposal is nothing new. Many of the negative effects of massive waste production and toxic pollution, such as poor health outcomes and decreased property values, disproportionately burden impoverished, minority communities inside and outside the United States (Brulle and Pellow, 2006). Native American communities have long been exploited for their natural resources and land-use, but in recent decades Indian country has also become a common place to store nuclear, hazardous and municipal wastes. This project is a case study of a local Indian reservation, the Salt River Pima-Maricopa Indian Community, and examined the socio-historical context of the landfill operations in terms of five principles of environmental justice. Each principle was defined and key moments from the SRPMIC's landfill history were discussed to demonstrate ways that the situation has improved, stayed the same or worsened with regard to the rights outlined in each principle. It was concluded that there needs to be an acknowledgement by involved municipalities and industries of the historical context that make the SRPMIC and other nearby Native American communities "ideal" contractors for waste management. Additionally, while the SRPMIC could currently benefit from looking into the principles of environmental justice as a guide to manage past and operating landfills, the Community will have a specific opportunity to revisit these issues under closer scrutiny during the closure of the Salt River Landfill in 2032 in order to ensure more environmentally just outcomes. Finally, it was concluded that scholarship at the intersection of environmental justice and Native American communities should continue because looking closer at the ways that local Native American communities are facing and resisting environmental injustice can serve to develop future models for other communities facing similar challenges to achieving environmental justice.
ContributorsScott, Nicole Danielle (Author) / Kinzig, Ann (Thesis director) / Harlan, Sharon (Committee member) / Maienschein, Jane (Committee member) / Barrett, The Honors College (Contributor) / School of Community Resources and Development (Contributor) / School of Social Transformation (Contributor) / School of Human Evolution and Social Change (Contributor)
Created2015-05
137090-Thumbnail Image.png
Description
This project examines a complex issue in urban ecology: the impact of biodiversity on ecosystem services, and considers how this varies across cities. Data were gathered on multiple economic and ecological parameters for a selection of seven cities around the world and analyzed via multiple linear regression in order to

This project examines a complex issue in urban ecology: the impact of biodiversity on ecosystem services, and considers how this varies across cities. Data were gathered on multiple economic and ecological parameters for a selection of seven cities around the world and analyzed via multiple linear regression in order to assess any relationships that may be at play. Significance values were then calculated to further define the relationships between the data. Analysis found that both biophysical and socioeconomic factors affected ecosystem services, although not all hypotheses regarding these relationships were met. Conclusions indicate that this model was fairly effective in describing physical drivers of ecosystem services, but were not as clear regarding social drivers. Further study regarding social parameters' effect on ecosystem services is recommended.
ContributorsMcDannald, Lindsay JoAnne (Author) / Perrings, Charles (Thesis director) / Kinzig, Ann (Committee member) / Grimm, Nancy (Committee member) / Barrett, The Honors College (Contributor) / School of Life Sciences (Contributor) / School of Sustainability (Contributor)
Created2014-05
Description
Smoke exposure in preterm infants can cause adverse health outcomes in these children. Preterm infants exposed to tobacco smoke have an increased risk for sudden infant death syndrome (SIDS), and metabolic syndrome, asthma, respiratory infections, ear infections and decreased cognitive function compared to healthy infants (Wilson 2011, Blizzard 2003, Bock

Smoke exposure in preterm infants can cause adverse health outcomes in these children. Preterm infants exposed to tobacco smoke have an increased risk for sudden infant death syndrome (SIDS), and metabolic syndrome, asthma, respiratory infections, ear infections and decreased cognitive function compared to healthy infants (Wilson 2011, Blizzard 2003, Bock 2008, Hutchison 1998). A smoking cessation program for parents of pre-term infants at Aultman Hospital in Canton, Ohio was designed to help parents of pre-term infants cease smoking behavior. The outcomes of this program were intended to be the topic of my honors thesis; however, lack of participation in the program shifted my research focus to designing a program, based on a review of "best practices" in the literature, that might increase participation. Among those parents who were asked to participate (N=56), being of low socioeconomic status correlated highest with smoking behavior . Through a literature review, I determined that the best practices to enhance participation for this group would be to include motivational interviewing, the phone number to a toll free quit line, and alternate smoking resources (pamphlets, alternative DVD's) for these Neonatal Intensive Care Unit (NICU) parents at Aultman. By the parent's participation in the Aultman smoking cessation program, long-term health outcomes of their newborns may improve by reducing their exposure to tobacco smoke. These children may grow up in an environment with less smoke exposure, which may decrease their risk of disease (Bock 2008).
ContributorsLach, Laura Elizabeth (Author) / Kinzig, Ann (Thesis director) / Oswalt, Krista (Committee member) / Mossman, Kenneth (Committee member) / Barrett, The Honors College (Contributor) / School of Life Sciences (Contributor) / School of Human Evolution and Social Change (Contributor)
Created2013-05