Matching Items (169)
133270-Thumbnail Image.png
Description
Blood donations today undergo extensive screening for transfusion transmitted infections (TTI) since the discovery of the first infectious agent in the early 1900s. Nucleic Acid Testing (NAT) is a serological test used widely in disease detection. NAT is known to rapidly and effectively detect pathogenic genomic material in blood by

Blood donations today undergo extensive screening for transfusion transmitted infections (TTI) since the discovery of the first infectious agent in the early 1900s. Nucleic Acid Testing (NAT) is a serological test used widely in disease detection. NAT is known to rapidly and effectively detect pathogenic genomic material in blood by reducing the "window period" of infection. However, NAT produces false negative results for disease positive samples posing a risk of disease transmission. Therefore, NAT is used in conjunction with the Enzyme-Linked Immunosorbent Assay (ELISA) to mitigate these risks. However, the ELISA assay also poses the same risk as NAT. This study proposes immunosignaturing as an alternative serological test that may combat this risk and investigates whether it would be more effective than other standardized serological tests in disease detection. Immunosignaturing detects antibodies by utilizing a microarray of randomized peptide sequences. Immunosignaturing provides information about an individual's immune health from the pattern of reactivity of antibody-peptide binding. Unlike ELISA and NAT, immunosignaturing can be programmed to detect any disease and detect multiple diseases simultaneously. Using ELISA, NAT, and immunosignaturing, immune profiles of asymptomatic patients were constructed for 10 different classes of blood borne diseases. A pattern of infection was identified for each disease and the sensitivity and specificity of these assays were assessed relative to each other. Results indicate that immunosignaturing can be a viable diagnostic tool in blood testing. Immunosignatures demonstrated increased sensitivity and specificity compared to ELISA and NAT in discerning disease positive and negative samples within and across different classes of disease.
ContributorsSharma, Megumi (Author) / McFadden, Grant (Thesis director) / Nickerson, Cheryl (Committee member) / Green, Alex (Committee member) / School of Molecular Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
Description
Circles of Sustainability is a self-evaluation tool designed to build educator capacity in K-12 schools seeking sustainability solutions. Based on the Sustainable Schools Challenge Handbook from Memphis, Tennessee, Circles of Sustainability considers environmental impact and efficiency, a healthy and safe school environment, sustainability and environmental education, and engagement and empowerment

Circles of Sustainability is a self-evaluation tool designed to build educator capacity in K-12 schools seeking sustainability solutions. Based on the Sustainable Schools Challenge Handbook from Memphis, Tennessee, Circles of Sustainability considers environmental impact and efficiency, a healthy and safe school environment, sustainability and environmental education, and engagement and empowerment as four key pillars of whole-school sustainability. Each pillar is composed of elements and rubric items, which are reviewed, totaled, and colored in on the front page of the tool to help educators visualize and evaluate the current state of sustainability at their school. Since its first iteration completed in May 2017, the tool has been used by 300 educators throughout the United States during ASU's Sustainability Teachers' Academy (STA) workshops. Circles of Sustainability is completed as part of an activity called "Evaluating Your Community," where educators complete the tool and then brainstorm sustainability projects and solutions for their school and community. This paper is a review and discussion of the research, informal feedback and formal feedback used to create the second iteration of the tool. A second iteration of the tool was created to make the tool more user-friendly and ensure each pillar, element, and rubric item are based in research. The informal feedback was conducted during STA workshops in Tempe, Arizona; Abingdon, Virginia; Princeton, New Jersey; Chicago, Illinois; Los Angeles, California; Tucson, Arizona; and Charlotte, North Carolina. The formal feedback was conducted using a survey distributed to teachers who participated in the Tucson and Charlotte workshops. Overall, educators have responded positively to the tool, and the second iteration will continue to be used in future STA workshops throughout the United States.
ContributorsColbert, Julia (Author) / Schoon, Michael (Thesis director) / Merritt, Eileen (Committee member) / School of Sustainability (Contributor) / Division of Teacher Preparation (Contributor) / School of Geographical Sciences and Urban Planning (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
134308-Thumbnail Image.png
Description
Cancer is one of the leading causes of death globally according to the World Health Organization. Although improved treatments and early diagnoses have reduced cancer related mortalities, metastatic disease remains a major clinical challenge. The local tumor microenvironment plays a significant role in cancer metastasis, where tumor cells respond and

Cancer is one of the leading causes of death globally according to the World Health Organization. Although improved treatments and early diagnoses have reduced cancer related mortalities, metastatic disease remains a major clinical challenge. The local tumor microenvironment plays a significant role in cancer metastasis, where tumor cells respond and adapt to a plethora of biochemical and biophysical signals from stromal cells and extracellular matrix (ECM) proteins. Due to these complexities, there is a critical need to understand molecular mechanisms underlying cancer metastasis to facilitate the discovery of more effective therapies. In the past few years, the integration of advanced biomaterials and microengineering approaches has initiated the development of innovative platform technologies for cancer research. These technologies enable the creation of biomimetic in vitro models with physiologically relevant (i.e. in vivo-like) characteristics to conduct studies ranging from fundamental cancer biology to high-throughput drug screening. In this review article, we discuss the biological significance of each step of the metastatic cascade and provide a broad overview on recent progress to recapitulate these stages using advanced biomaterials and microengineered technologies. In each section, we will highlight the advantages and shortcomings of each approach and provide our perspectives on future directions.
ContributorsPeela, Nitish (Author) / Nikkhah, Mehdi (Thesis director) / LaBaer, Joshua (Committee member) / Harrington Bioengineering Program (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2017-05
134436-Thumbnail Image.png
Description
Glioblastoma is the most aggressive and lethal brain tumor, due to its resistance to current conventional therapy. The resistance to chemo- and radiotherapy has been attributed to a special population of cells known as glioma stem cells. Previous literature has shown the importance of a Central Nervous System-restricted transcription factor

Glioblastoma is the most aggressive and lethal brain tumor, due to its resistance to current conventional therapy. The resistance to chemo- and radiotherapy has been attributed to a special population of cells known as glioma stem cells. Previous literature has shown the importance of a Central Nervous System-restricted transcription factor OLIG2 in maintaining the tumor-propagating potential of these glioma stem cells. OLIG2's function was further elucidated, with its pro-mitogenic function due to its ability to negatively regulate the p53 pathway by suppressing the acetylation of the p53 protein's C terminal domain. Past work in our lab has confirmed that one of OLIG2's partner proteins is Histone Deacetylase 1 (HDAC1). In vitro experiments have also shown that targeting HDAC1 using hairpin RNA in glioma stem cells negatively impacts proliferation. In a survival study using a murine glioma model, targeting Hdac1 using hairpin RNA is shown to reduce tumor burden and increase survival. In this paper, we demonstrate that silencing Hdac1 expression reduces proliferation, increases cell death, likely a result of increased acetylation of p53. Olig2 expression levels seem to be unaffected in GSCs, demonstrating that the Hdac1 protein ablation is indeed lethal to GSCs. This work builds upon previously collected results, confirming that Hdac1 is a potential surrogate target for Olig2's pro-mitotic function in regulating the p53 pathway.
ContributorsLoo, Vincent You Wei (Author) / LaBaer, Joshua (Thesis director) / Mehta, Shwetal (Committee member) / School of Molecular Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2017-05
134234-Thumbnail Image.png
Description
CREB3L1 has been previously shown to auto-acetylate itself when prepared from HeLa cell based in vitro protein expression lysates. To circumvent the concerns of the contamination of co-purified human proteins from HeLa lysates, the protein was purified through insect cell transfection in vitro. The objective of this study was to

CREB3L1 has been previously shown to auto-acetylate itself when prepared from HeLa cell based in vitro protein expression lysates. To circumvent the concerns of the contamination of co-purified human proteins from HeLa lysates, the protein was purified through insect cell transfection in vitro. The objective of this study was to assay the auto-acetylation activity of CREB3L1 prepared from insect cells using the baculovirus expression vector system (BEVS). To this end, His-tagged CREB3L1 was affinity purified from Hi5 cells using an IMAC column and used for acetylation assay. Samples were taken different time points and auto-acetylation was by western using antibodies specific to acetylated lysines. Auto-acetylation activity was observed after overnight incubation. Future experiments will focus on the improvement of purification yield and the identification of the substrates and interacting proteins of CREB3L1 to better understand the biological functions of this novel acetyltransferase.
ContributorsSchwab, Anna (Author) / LaBaer, Joshua (Thesis director) / Qiu, Ji (Committee member) / Barrett, The Honors College (Contributor)
Created2017-05
134876-Thumbnail Image.png
Description
PD-L1 blockade has shown recent success in cancer therapy and cancer vaccine regimens. One approach for anti-PD-L1 antibodies has been their application as adjuvants for cancer vaccines. Given the disadvantages of such antibodies, including long half-life and adverse events related to their use, a novel strategy using synbodies in place

PD-L1 blockade has shown recent success in cancer therapy and cancer vaccine regimens. One approach for anti-PD-L1 antibodies has been their application as adjuvants for cancer vaccines. Given the disadvantages of such antibodies, including long half-life and adverse events related to their use, a novel strategy using synbodies in place of antibodies can be tested. Synbodies offer a variety of advantages, including shorter half-life, smaller size, and cheaper cost. Peptides that could bind PD-L1 were identified via peptide arrays and used to construct synbodies. These synbodies were tested with inhibition ELISA assays, SPR, and pull down assays. Additional flow cytometry analysis was done to determine the binding specificity of the synbodies to PD-L1 and the ability of those synbodies to inhibit the PD-L1/PD-1 interaction. Although analysis of permeabilized cells expressing PD-L1 indicated that the synbodies could successfully bind PD-L1, those results were not replicated in non-permeabilized cells. Further assays suggested that the binding of the synbodies was non-specific. Other tests were done to see if the synbodies could inhibit the PD-1/PD-L1 interaction. This assay did not yield any conclusive results and further experimentation is needed to determine the efficacy of the synbodies in inhibiting this interaction.
ContributorsMujahed, Tala (Author) / Johnston, Stephen (Thesis director) / Blattman, Joseph (Committee member) / Diehnelt, Chris (Committee member) / School of Molecular Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2016-12
134743-Thumbnail Image.png
Description
The devastating 2014 Ebola virus outbreak in Western Africa demonstrated the lack of therapeutic approaches available for the virus. Although monoclonal antibodies (mAb) and other molecules have been developed that bind the virus, no therapeutic has shown the efficacy needed for FDA approval. Here, a library of 50 peptide based

The devastating 2014 Ebola virus outbreak in Western Africa demonstrated the lack of therapeutic approaches available for the virus. Although monoclonal antibodies (mAb) and other molecules have been developed that bind the virus, no therapeutic has shown the efficacy needed for FDA approval. Here, a library of 50 peptide based ligands that bind the glycoprotein of the Zaire Ebola virus (GP) were developed. Using whole virus screening of vesicular stomatitis virus pseudotyped with GP, low affinity peptides were identified for ligand construction. In depth analysis showed that two of the peptide based molecules bound the Zaire GP with <100 nM KD. One of these two ligands was blocked by a known neutralizing mAb, 2G4, and showed cross-reactivity to the Sudan GP. This work presents ligands with promise for therapeutic applications across multiple variants of the Ebola virus.
ContributorsRabinowitz, Joshua Avraam (Author) / Diehnelt, Chris (Thesis director) / Johnston, Stephen (Committee member) / School of Molecular Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2016-12
134658-Thumbnail Image.png
Description
Both technological and scientific fields continue to revolutionize in a similar fashion; however, a major difference is that high-tech corporations have found models to continue progressions while still keeping product costs low. The main objective was to identify which, if any, components of certain technological models could be used with

Both technological and scientific fields continue to revolutionize in a similar fashion; however, a major difference is that high-tech corporations have found models to continue progressions while still keeping product costs low. The main objective was to identify which, if any, components of certain technological models could be used with the vaccine and pharmaceutical markets to significantly lower their costs. Smartphones and computers were the two main items investigated while the two main items from the scientific standpoint were vaccines and pharmaceuticals. One concept had the ability to conceivably decrease the costs of vaccines and drugs and that was "market competition". If the United States were able to allow competition within the vaccine and drug companies, it would allow for the product prices to be best affected. It would only take a few small companies to generate generic versions of the drugs and decrease the prices. It would force the larger competition to most likely decrease their prices. Furthermore, the PC companies use a cumulative density function (CDF) to effectively divide their price setting in each product cycle. It was predicted that if this CDF model were applied to the vaccine and drug markets, the prices would no longer have to be extreme. The corporations would be able to set the highest price for the wealthiest consumers and then slowly begin to decrease the costs for the middle and lower class. Unfortunately, the problem within the vaccine and pharmaceutical markets was not the lack of innovation or business models. The problem lied with their liberty to choose product costs due to poor U.S. government regulations.
ContributorsCalderon, Gerardo (Author) / Johnston, Stephen (Thesis director) / Diehnelt, Chris (Committee member) / School of Molecular Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2016-12
134679-Thumbnail Image.png
Description
The fence between the US and Mexico had been and continues to be a controversial topic in both the U.S., Mexico and around the world. This study will look at the negative externalities related to the environment, society, and economy of the current fence on the border. The central question

The fence between the US and Mexico had been and continues to be a controversial topic in both the U.S., Mexico and around the world. This study will look at the negative externalities related to the environment, society, and economy of the current fence on the border. The central question behind the thesis is whether or not the fence has a direct impact on the ecosystem and people around it.
ContributorsHoyt, Stephanie Alexis (Author) / Schoon, Michael (Thesis director) / Breetz, Hanna (Committee member) / School of Sustainability (Contributor) / School of Politics and Global Studies (Contributor) / Barrett, The Honors College (Contributor)
Created2016-12
135371-Thumbnail Image.png
Description
Almost every form of cancer deregulates the expression and activity of anabolic glycosyltransferase (GT) enzymes, which incorporate particular monosaccharides in a donor acceptor as well as linkage- and anomer-specific manner to assemble complex and diverse glycans that significantly affect numerous cellular events, including tumorigenesis and metastasis. Because glycosylation is not

Almost every form of cancer deregulates the expression and activity of anabolic glycosyltransferase (GT) enzymes, which incorporate particular monosaccharides in a donor acceptor as well as linkage- and anomer-specific manner to assemble complex and diverse glycans that significantly affect numerous cellular events, including tumorigenesis and metastasis. Because glycosylation is not template-driven, GT deregulation yields heterogeneous arrays of aberrant intact glycan products, some in undetectable quantities in clinical bio-fluids (e.g., blood plasma). Numerous glycan features (e.g., 6 sialylation, β-1,6-branching, and core fucosylation) stem from approximately 25 glycan “nodes:” unique linkage specific monosaccharides at particular glycan branch points that collectively confer distinguishing features upon glycan products. For each node, changes in normalized abundance (Figure 1) may serve as nearly 1:1 surrogate measure of activity for culpable GTs and may correlate with particular stages of carcinogenesis. Complementary to traditional top down glycomics, the novel bottom-up technique applied herein condenses each glycan node and feature into a single analytical signal, quantified by two GC-MS instruments: GCT (time-of-flight analyzer) and GCMSD (transmission quadrupole analyzers). Bottom-up analysis of stage 3 and 4 breast cancer cases revealed better overall precision for GCMSD yet comparable clinical performance of both GC MS instruments and identified two downregulated glycan nodes as excellent breast cancer biomarker candidates: t-Gal and 4,6-GlcNAc (ROC AUC ≈ 0.80, p < 0.05). Resulting from the activity of multiple GTs, t-Gal had the highest ROC AUC (0.88) and lowest ROC p‑value (0.001) among all analyzed nodes. Representing core-fucosylation, glycan node 4,6-GlcNAc is a nearly 1:1 molecular surrogate for the activity of α-(1,6)-fucosyltransferase—a potential target for cancer therapy. To validate these results, future projects can analyze larger sample sets, find correlations between breast cancer stage and changes in t-Gal and 4,6-GlcNAc levels, gauge the specificity of these nodes for breast cancer and their potential role in other cancer types, and develop clinical tests for reliable breast cancer diagnosis and treatment monitoring based on t-Gal and 4,6-GlcNAc.
ContributorsZaare, Sahba (Author) / Borges, Chad (Thesis director) / LaBaer, Joshua (Committee member) / School of Molecular Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05