Matching Items (172)
148418-Thumbnail Image.png
Description

A thermochromic mid-infrared filter is designed, where a spectrally-selective transmittance peak exists while vanadium dioxide layers are below their transition temperature but broad opaqueness is observed below the transition temperature. This filter takes advantage of interference effects between a silicon spacer and insulating vanadium dioxide to create the transmittance peak

A thermochromic mid-infrared filter is designed, where a spectrally-selective transmittance peak exists while vanadium dioxide layers are below their transition temperature but broad opaqueness is observed below the transition temperature. This filter takes advantage of interference effects between a silicon spacer and insulating vanadium dioxide to create the transmittance peak and the drastic optical property change between insulating and metallic vanadium dioxide. The theoretical performance of the filter in energy dissipation and thermal camouflaging applications is analyzed and can be optimized by tuning the thicknesses of the thin-film layers.

ContributorsChao, Jeremy (Author) / Wang, Liping (Thesis director) / Taylor, Sydney (Committee member) / Mechanical and Aerospace Engineering Program (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
135609-Thumbnail Image.png
Description
Zeolitic Imidazolate Frameworks (ZIFs) are a promising technology for the separation of gases. ZIFs represent a type of hybrid material that is a subset of metal organic frameworks while displaying zeolite properties. ZIFs have tunable pore metrics, high thermal stability, and large surface areas giving them advantages over traditional zeolites.

Zeolitic Imidazolate Frameworks (ZIFs) are a promising technology for the separation of gases. ZIFs represent a type of hybrid material that is a subset of metal organic frameworks while displaying zeolite properties. ZIFs have tunable pore metrics, high thermal stability, and large surface areas giving them advantages over traditional zeolites. The experiment sought to determine the flux of hexane vapor through ZIF-68 with Fourier Transform Infrared Spectroscopy (FTIR) mapping. FTIR mapping was used to obtain three spectra per crystal and the concentration gradient was analyzed to determine the flux. ZIF-68 was completely stable when loaded with hexane and exposed to the atmosphere. There was no hexane diffusion out of the crystal. As a result, ZIF-68 was heated to 50°C to increase diffusion and calculate the flux. ZIF-68 adhered to Knudsen Diffusion, and the flux was calculated to be 2.00*10-5 kg mol/s*m2. The small flux occurred because almost no concentration gradient was obtained through the crystal. It was hypothesized that the resistance in the crystal was substantially lower than the resistance at the boundary layer, which would have caused a small concentration gradient. Using film mass transfer theory, the resistance inside the crystal was found to be 1200 times lower than the resistance at the boundary layer confirming the hypothesis.
ContributorsSigrist, Dallas Dale (Author) / Lin, Jerry (Thesis director) / Wang, Liping (Committee member) / Chemical Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
141392-Thumbnail Image.png
Description

Problem: The prospect that urban heat island (UHI) effects and climate change may increase urban temperatures is a problem for cities that actively promote urban redevelopment and higher densities. One possible UHI mitigation strategy is to plant more trees and other irrigated vegetation to prevent daytime heat storage and facilitate

Problem: The prospect that urban heat island (UHI) effects and climate change may increase urban temperatures is a problem for cities that actively promote urban redevelopment and higher densities. One possible UHI mitigation strategy is to plant more trees and other irrigated vegetation to prevent daytime heat storage and facilitate nighttime cooling, but this requires water resources that are limited in a desert city like Phoenix.

Purpose: We investigated the tradeoffs between water use and nighttime cooling inherent in urban form and land use choices.

Methods: We used a Local-Scale Urban Meteorological Parameterization Scheme (LUMPS) model to examine the variation in temperature and evaporation in 10 census tracts in Phoenix's urban core. After validating results with estimates of outdoor water use based on tract-level city water records and satellite imagery, we used the model to simulate the temperature and water use consequences of implementing three different scenarios.

Results and conclusions: We found that increasing irrigated landscaping lowers nighttime temperatures, but this relationship is not linear; the greatest reductions occur in the least vegetated neighborhoods. A ratio of the change in water use to temperature impact reached a threshold beyond which increased outdoor water use did little to ameliorate UHI effects.

Takeaway for practice: There is no one design and landscape plan capable of addressing increasing UHI and climate effects everywhere. Any one strategy will have inconsistent results if applied across all urban landscape features and may lead to an inefficient allocation of scarce water resources.

Research Support: This work was supported by the National Science Foundation (NSF) under Grant SES-0345945 (Decision Center for a Desert City) and by the City of Phoenix Water Services Department. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of NSF.

ContributorsGober, Patricia (Author) / Brazel, Anthony J. (Author) / Quay, Ray (Author) / Myint, Soe (Author) / Grossman-Clarke, Susanne (Author) / Miller, Adam (Author) / Rossi, Steve (Author)
Created2010-01-04
141393-Thumbnail Image.png
Description

This study addresses a classic sustainability challenge—the tradeoff between water conservation and temperature amelioration in rapidly growing cities, using Phoenix, Arizona and Portland, Oregon as case studies. An urban energy balance model— LUMPS (Local-Scale Urban Meteorological Parameterization Scheme)—is used to represent the tradeoff between outdoor water use and nighttime cooling

This study addresses a classic sustainability challenge—the tradeoff between water conservation and temperature amelioration in rapidly growing cities, using Phoenix, Arizona and Portland, Oregon as case studies. An urban energy balance model— LUMPS (Local-Scale Urban Meteorological Parameterization Scheme)—is used to represent the tradeoff between outdoor water use and nighttime cooling during hot, dry summer months. Tradeoffs were characterized under three scenarios of land use change and three climate-change assumptions. Decreasing vegetation density reduced outdoor water use but sacrificed nighttime cooling. Increasing vegetated surfaces accelerated nighttime cooling, but increased outdoor water use by ~20%. Replacing impervious surfaces with buildings achieved similar improvements in nighttime cooling with minimal increases in outdoor water use; it was the most water-efficient cooling strategy. The fact that nighttime cooling rates and outdoor water use were more sensitive to land use scenarios than climate-change simulations suggested that cities can adapt to a warmer climate by manipulating land use.

ContributorsGober, Patricia (Author) / Middel, Ariane (Author) / Brazel, Anthony J. (Author) / Myint, Soe (Author) / Chang, Heejun (Author) / Duh, Jiunn-Der (Author) / House-Peters, Lily (Author)
Created2013-05-16
149368-Thumbnail Image.png
Description
In oxygenic photosynthesis, Photosystem I (PSI) and Photosystem II (PSII) are two transmembrane protein complexes that catalyze the main step of energy conversion; the light induced charge separation that drives an electron transfer reaction across the thylakoid membrane. Current knowledge of the structure of PSI and PSII is based on

In oxygenic photosynthesis, Photosystem I (PSI) and Photosystem II (PSII) are two transmembrane protein complexes that catalyze the main step of energy conversion; the light induced charge separation that drives an electron transfer reaction across the thylakoid membrane. Current knowledge of the structure of PSI and PSII is based on three structures: PSI and PSII from the thermophilic cyanobacterium Thermosynechococcus elonagatus and the PSI/light harvesting complex I (PSI-LHCI) of the plant, Pisum sativum. To improve the knowledge of these important membrane protein complexes from a wider spectrum of photosynthetic organisms, photosynthetic apparatus of the thermo-acidophilic red alga, Galdieria sulphuraria and the green alga, Chlamydomonas reinhardtii were studied. Galdieria sulphuraria grows in extreme habitats such as hot sulfur springs with pH values from 0 to 4 and temperatures up to 56°C. In this study, both membrane protein complexes, PSI and PSII were isolated from this organism and characterized. Ultra-fast fluorescence spectroscopy and electron microscopy studies of PSI-LHCI supercomplexes illustrate how this organism has adapted to low light environmental conditions by tightly coupling PSI and LHC, which have not been observed in any organism so far. This result highlights the importance of structure-function relationships in different ecosystems. Galdieria sulphuraria PSII was used as a model protein to show the amenability of integral membrane proteins to top-down mass spectrometry. G.sulphuraria PSII has been characterized with unprecedented detail with identification of post translational modification of all the PSII subunits. This study is a technology advancement paving the way for the usage of top-down mass spectrometry for characterization of other large integral membrane proteins. The green alga, Chlamydomonas reinhardtii is widely used as a model for eukaryotic photosynthesis and results from this organism can be extrapolated to other eukaryotes, especially agricultural crops. Structural and functional studies on the PSI-LHCI complex of C.reinhardtii grown under high salt conditions were studied using ultra-fast fluorescence spectroscopy, circular dichroism and MALDI-TOF. Results revealed that pigment-pigment interactions in light harvesting complexes are disrupted and the acceptor side (ferredoxin docking side) is damaged under high salt conditions.
ContributorsThangaraj, Balakumar (Author) / Fromme, Petra (Thesis advisor) / Shock, Everett (Committee member) / Chen, Julian (Committee member) / Arizona State University (Publisher)
Created2010
148448-Thumbnail Image.png
Description

This paper discusses the theoretical approximation and attempted measurement of the quantum <br/>force produced by material interactions though the use of a tuning fork-based atomic force microscopy <br/>device. This device was built and orientated specifically for the measurement of the Casimir force as a <br/>function of separation distance using a

This paper discusses the theoretical approximation and attempted measurement of the quantum <br/>force produced by material interactions though the use of a tuning fork-based atomic force microscopy <br/>device. This device was built and orientated specifically for the measurement of the Casimir force as a <br/>function of separation distance using a piezo actuator for approaching and a micro tuning fork for the <br/>force measurement. This project proceeds with an experimental measurement of the ambient Casmir force <br/>through the use of a tuning fork-based AFM to determine its viability in measuring the magnitude of the <br/>force interaction between an interface material and the tuning fork probe. The ambient measurements <br/>taken during the device’s development displayed results consistent with theoretical approximations, while<br/>demonstrating the capability to perform high-precision force measurements. The experimental results<br/>concluded in a successful development of a device which has the potential to measure forces of <br/>magnitude 10−6 to 10−9 at nanometric gaps. To conclude, a path to material analysis using an approach <br/>stage, alternative methods of testing, and potential future experiments are speculated upon.

ContributorsMulkern, William Michael (Author) / Wang, Liping (Thesis director) / Kwon, Beomjin (Committee member) / Mechanical and Aerospace Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
148495-Thumbnail Image.png
Description

This paper investigates near-field thermal radiation as the primary source of heat transfer between two parallel surfaces. This radiation takes place extremely close to the heated surfaces in study so the experimental set-up to be used will be done at the nanometer scale. The primary theory being investigated is that

This paper investigates near-field thermal radiation as the primary source of heat transfer between two parallel surfaces. This radiation takes place extremely close to the heated surfaces in study so the experimental set-up to be used will be done at the nanometer scale. The primary theory being investigated is that near-field radiation generates greater heat flux that conventional radiation governed by Planck’s law with maximum for blackbodies. Working with a phase shift material such as VO2 enables a switch-like effect to occur where the total amount of heat flux fluctuates as VO2 transitions from a metal to an insulator. In this paper, the theoretical heat flux and near-field radiation effect are modeled for a set-up of VO2 and SiO2 layers separated by different vacuum gaps. In addition, a physical experimental set-up is validated for future near-field radiation experiments.

ContributorsSluder, Nicole (Author) / Wang, Liping (Thesis director) / Wang, Ropert (Committee member) / Mechanical and Aerospace Engineering Program (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
131058-Thumbnail Image.png
Description
Tempe Town Lake is the site of fifteen years’ worth of chemical data collection by ASU researchers. In 2018 the dataSONDE, an instrument capable of measuring different water quality parameters every thirty minutes for a month at a time was installed in the lake. The SONDE has the potential to

Tempe Town Lake is the site of fifteen years’ worth of chemical data collection by ASU researchers. In 2018 the dataSONDE, an instrument capable of measuring different water quality parameters every thirty minutes for a month at a time was installed in the lake. The SONDE has the potential to completely reduce the need for sampling by hand. Before the SONDE becomes the sole means of gathering data, it is important to verify its accuracy. In this study, the measurements gathered by the SONDE (pH, dissolved oxygen, temperature, conductivity and colored dissolved organic matter) were compared to measurements gathered using the verified methods from the past fifteen years.
ContributorsSauer, Elinor Rayne (Author) / Hartnett, Hilairy (Thesis director) / Glaser, Donald (Committee member) / Shock, Everett (Committee member) / Historical, Philosophical & Religious Studies (Contributor) / School of Molecular Sciences (Contributor) / School of Life Sciences (Contributor) / School of Sustainability (Contributor) / Barrett, The Honors College (Contributor)
Created2020-12
130342-Thumbnail Image.png
Description
Background
Grading schemes for breast cancer diagnosis are predominantly based on pathologists' qualitative assessment of altered nuclear structure from 2D brightfield microscopy images. However, cells are three-dimensional (3D) objects with features that are inherently 3D and thus poorly characterized in 2D. Our goal is to quantitatively characterize nuclear structure in 3D,

Background
Grading schemes for breast cancer diagnosis are predominantly based on pathologists' qualitative assessment of altered nuclear structure from 2D brightfield microscopy images. However, cells are three-dimensional (3D) objects with features that are inherently 3D and thus poorly characterized in 2D. Our goal is to quantitatively characterize nuclear structure in 3D, assess its variation with malignancy, and investigate whether such variation correlates with standard nuclear grading criteria.
Methodology
We applied micro-optical computed tomographic imaging and automated 3D nuclear morphometry to quantify and compare morphological variations between human cell lines derived from normal, benign fibrocystic or malignant breast epithelium. To reproduce the appearance and contrast in clinical cytopathology images, we stained cells with hematoxylin and eosin and obtained 3D images of 150 individual stained cells of each cell type at sub-micron, isotropic resolution. Applying volumetric image analyses, we computed 42 3D morphological and textural descriptors of cellular and nuclear structure.
Principal Findings
We observed four distinct nuclear shape categories, the predominant being a mushroom cap shape. Cell and nuclear volumes increased from normal to fibrocystic to metastatic type, but there was little difference in the volume ratio of nucleus to cytoplasm (N/C ratio) between the lines. Abnormal cell nuclei had more nucleoli, markedly higher density and clumpier chromatin organization compared to normal. Nuclei of non-tumorigenic, fibrocystic cells exhibited larger textural variations than metastatic cell nuclei. At p<0.0025 by ANOVA and Kruskal-Wallis tests, 90% of our computed descriptors statistically differentiated control from abnormal cell populations, but only 69% of these features statistically differentiated the fibrocystic from the metastatic cell populations.
Conclusions
Our results provide a new perspective on nuclear structure variations associated with malignancy and point to the value of automated quantitative 3D nuclear morphometry as an objective tool to enable development of sensitive and specific nuclear grade classification in breast cancer diagnosis.
Created2012-01-05
132353-Thumbnail Image.png
Description
Dissolved organic matter (DOM) can have numerous effects on the water chemistry and the biological life within an aquatic system with its wide variety of chemical structures and properties. The composition of the dissolved carbon can be estimated by utilizing the fluorescent properties of some DOM such as aromatic amino

Dissolved organic matter (DOM) can have numerous effects on the water chemistry and the biological life within an aquatic system with its wide variety of chemical structures and properties. The composition of the dissolved carbon can be estimated by utilizing the fluorescent properties of some DOM such as aromatic amino acids and humic material. This experiment was used to observe how organic matter could influence hydrothermal systems, such as Sylvan Springs in Yellowstone National Park, USA. Using optical density at 600 nm (OD 600), excitation-emission matrix spectra (EEMS), and Illumina sequencing methods (16S rRNA gene sequencing), changes in dissolved organic matter (DOM) were observed based on long term incubation at 84ºC and microbial influence. Four media conditions were tested over a two-month duration to assess these changes: inoculated pine needle media, uninoculated pine needle media, inoculated yeast extract media, and uninoculated yeast extract media. The inoculated samples contained microbes from a fluid and sediment sample of Sylvan Spring collected July 23, 2018. Absorbance indicated that media containing pine needle broth poorly support life, whereas media containing yeast extract revealed a positive increase in growth. Excitation-Emission Matrix Spectra of the all media conditions indicated changes in DOM composition throughout the trial. There were limited differences between the inoculated and uninoculated samples suggesting that the DOM composition change in this study was dominated by the two-month incubation at 84ºC more than biotic processes. Sequencing performed on a sediment sample collected from Sylvan Spring indicated five main order of prokaryotic phyla: Aquificales, Desulfurococcales, Thermoproteales, Thermodesulfobacteriales, and Crenarchaeota. These organisms are not regarded as heterotrophic microbes, so the lack of significant biotic changes in DOM could be a result of these microorganisms not being able to utilize these enrichments as their main metabolic energy supply.
ContributorsKnott, Nicholas Joseph (Author) / Shock, Everett (Thesis director) / Hartnett, Hilairy (Committee member) / Till, Christy (Committee member) / School of Molecular Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05