Matching Items (98)
154839-Thumbnail Image.png
Description
Positive alcohol outcome expectancies (AOEs) are consistent longitudinal predictors of later alcohol use; however, exclusion of solitary drinking contexts in the measurement of AOEs may have resulted in an underestimation of the importance of low arousal positive (LAP) effects. The current study aimed to clarify the literature on the association

Positive alcohol outcome expectancies (AOEs) are consistent longitudinal predictors of later alcohol use; however, exclusion of solitary drinking contexts in the measurement of AOEs may have resulted in an underestimation of the importance of low arousal positive (LAP) effects. The current study aimed to clarify the literature on the association between AOEs and drinking outcomes by examining the role of drinking context in AOE measurement. Further, exclusion of contextual influences has also limited understanding of the unique effects of AOEs relative to subjective responses (SR) to alcohol. The present study addressed this important question by exploring relations between AOEs and SR when drinking context was held constant across parallel measures of these constructs. Understanding which of these factors drives relations between alcohol effects and drinking behavior has important implications for intervention. After conducting confirmatory factor analysis (CFA) and tests of measurement invariance for the AOE and SR measures, 4 aims collectively examined the role of context in reporting of AOEs (Aims 1 and 2), the extent to which context specific AOEs uniquely relate to drinking outcomes (Aim 3), and the importance of context effects on correspondence between AOEs and SR (Aim 4). Results of Aims 1 and 2 demonstrated that participants are imagining contexts when reporting on measures of AOEs that do not specify the context, and found significant mean differences in high and low arousal positive AOEs across contexts. Contrary to the hypotheses of Aim 3, context-specific AOEs were not significantly associated with drinking behavior. Results of Aim 4 indicated that while LAP AOEs for both unspecified and solitary contexts were associated with LAP SR in a solitary setting, unspecified context AOEs had a stronger relation than the solitary context AOEs. No significant relations between high arousal positive (HAP) AOEs and HAP SR emerged. The findings suggest that further investigation of the relation between context-specific AOEs and drinking outcomes/SR is warranted. Future studies of these hypotheses in samples with a wider range of drinking behavior, or at different stages of alcohol involvement, will elucidate whether mean level differences in context specific AOEs are important in understanding alcohol related outcomes.
ContributorsScott, Caitlin (Author) / Corbin, William (Thesis advisor) / MacKinnon, David (Committee member) / Barrera, Manuel (Committee member) / Chassin, Laurie (Committee member) / Arizona State University (Publisher)
Created2016
153904-Thumbnail Image.png
Description
Recent advances in hierarchical or multilevel statistical models and causal inference using the potential outcomes framework hold tremendous promise for mock and real jury research. These advances enable researchers to explore how individual jurors can exert a bottom-up effect on the jury’s verdict and how case-level features can exert a

Recent advances in hierarchical or multilevel statistical models and causal inference using the potential outcomes framework hold tremendous promise for mock and real jury research. These advances enable researchers to explore how individual jurors can exert a bottom-up effect on the jury’s verdict and how case-level features can exert a top-down effect on a juror’s perception of the parties at trial. This dissertation explains and then applies these technical advances to a pre-existing mock jury dataset to provide worked examples in an effort to spur the adoption of these techniques. In particular, the paper introduces two new cross-level mediated effects and then describes how to conduct ecological validity tests with these mediated effects. The first cross-level mediated effect, the a1b1 mediated effect, is the juror level mediated effect for a jury level manipulation. The second cross-level mediated effect, the a2bc mediated effect, is the unique contextual effect that being in a jury has on the individual the juror. When a mock jury study includes a deliberation versus non-deliberation manipulation, the a1b1 can be compared for the two conditions, enabling a general test of ecological validity. If deliberating in a group generally influences the individual, then the two indirect effects should be significantly different. The a2bc can also be interpreted as a specific test of how much changes in jury level means of this specific mediator effect juror level decision-making.
ContributorsLovis-McMahon, David (Author) / Schweitzer, Nicholas (Thesis advisor) / Saks, Michael (Thesis advisor) / Salerno, Jessica (Committee member) / MacKinnon, David (Committee member) / Arizona State University (Publisher)
Created2015
153996-Thumbnail Image.png
Description
Variability in subjective response to alcohol has been shown to predict drinking behavior as well as the development of alcohol use disorders. The current study examined the extent to which individual differences in alcohol pharmacokinetics impact subjective response and drinking behavior during a single session alcohol administration paradigm.

Variability in subjective response to alcohol has been shown to predict drinking behavior as well as the development of alcohol use disorders. The current study examined the extent to which individual differences in alcohol pharmacokinetics impact subjective response and drinking behavior during a single session alcohol administration paradigm. Participants (N = 98) completed measures of subjective response at two time points following alcohol consumption. Pharmacokinetic properties (rate of absorption and metabolism) were inferred using multiple BAC readings to calculate the area under the curve during the ascending limb for absorption and descending limb for metabolism. Following the completion of the subjective response measures, an ad-libitum taste rating task was implemented in which participants were permitted to consume additional alcoholic beverages. The amount consumed during the taste rating task served as the primary outcome variable. Results of the study indicated that participants who metabolized alcohol more quickly maintained a greater level of subjective stimulation as blood alcohol levels declined and reported greater reductions in subjective sedation. Although metabolism did not have a direct influence on within session alcohol consumption, a faster metabolism did relate to increased ad-libitum consumption indirectly through greater acute tolerance to sedative effects and greater maintenance of stimulant effects. Rate of absorption did not significantly predict subjective response or within session drinking. The results of the study add clarity to theories of subjective response to alcohol, and suggest that those at highest risk for alcohol problems experience a more rapid reduction in sedation following alcohol consumption while simultaneously experiencing heightened levels of stimulation. Variability in pharmacokinetics, namely how quickly one metabolizes alcohol, may be an identifiable biomarker of subjective response and may be used to infer risk for alcohol problems.
ContributorsBoyd, Stephen (Author) / Corbin, William R. (Thesis advisor) / Chassin, Laurie (Committee member) / MacKinnon, David (Committee member) / Olive, Michael Foster (Committee member) / Arizona State University (Publisher)
Created2014
153998-Thumbnail Image.png
Description
The present study utilized longitudinal data from a high-risk community sample (n=254, 52.8% female, 47.2% children of alcoholics, 74% non-Hispanic Caucasian) to test questions concerning the effects of genetic risk, parental knowledge, and peer substance use on emerging adult substance use disorders (SUDs). Specifically, this study examined whether parental knowledge

The present study utilized longitudinal data from a high-risk community sample (n=254, 52.8% female, 47.2% children of alcoholics, 74% non-Hispanic Caucasian) to test questions concerning the effects of genetic risk, parental knowledge, and peer substance use on emerging adult substance use disorders (SUDs). Specifically, this study examined whether parental knowledge and peer substance use mediated the effects of parent alcohol use disorder (AUD) and genetic risk for behavioral undercontrol on SUD. The current study also examined whether genetic risk moderated effects of parental knowledge and peer substance use on risk for SUD. Finally, this study examined these questions over and above a genetic "control" which explained a large proportion of variance in the outcome, thereby providing a stricter test of environmental influences.

Analyses were performed in a path analysis framework. To test these research questions, the current study employed two polygenic risk scores. The first, a theory-based score, was formed using single-nucleotide polymorphisms (SNPs) from receptor systems implicated in the amplification of positive effects in the presence of new/exciting stimuli and/or pleasure derived from using substances. The second, an empirically-based score, was formed using a data-driven approach that explained a large amount of variance in SUDs. Together, these scores allowed the present study to test explanations for the relations among parent AUD, parental knowledge, peer substance use, and SUDs.

Results of the current study found that having parents with less knowledge or an AUD conferred greater risk for SUDs, but only for those at higher genetic risk for behavioral undercontrol. The current study replicated research findings suggesting that peer substance use mediated the effect of parental AUD on SUD. However, it adds to this literature by suggesting that some mechanism other than increased behavioral undercontrol explains relations among parental AUD, peer substance use, and emerging adult SUD. Taken together, these findings indicate that children of parents with AUDs comprise a particularly risky group, although likelihood of SUD within this group is not uniform. These findings also suggest that some of the most important environmental risk factors for SUDs exert effects that vary across level of genetic propensity.
ContributorsBountress, Kaitlin (Author) / Chassin, Laurie (Thesis advisor) / Crnic, Keith (Committee member) / Lemery-Chalfant, Kathryn (Committee member) / MacKinnon, David (Committee member) / Arizona State University (Publisher)
Created2015
154002-Thumbnail Image.png
Description
The discovery and development of novel antibacterial agents is essential to address the rising health concern over antibiotic resistant bacteria. This research investigated the antibacterial activity of a natural clay deposit near Crater Lake, Oregon, that is effective at killing antibiotic resistant human pathogens. The primary rock types in the

The discovery and development of novel antibacterial agents is essential to address the rising health concern over antibiotic resistant bacteria. This research investigated the antibacterial activity of a natural clay deposit near Crater Lake, Oregon, that is effective at killing antibiotic resistant human pathogens. The primary rock types in the deposit are andesitic pyroclastic materials, which have been hydrothermally altered into argillic clay zones. High-sulfidation (acidic) alteration produced clay zones with elevated pyrite (18%), illite-smectite (I-S) (70% illite), elemental sulfur, kaolinite and carbonates. Low-sulfidation alteration at neutral pH generated clay zones with lower pyrite concentrations pyrite (4-6%), the mixed-layered I-S clay rectorite (R1, I-S) and quartz.

Antibacterial susceptibility testing reveals that hydrated clays containing pyrite and I-S are effective at killing (100%) of the model pathogens tested (E. coli and S. epidermidis) when pH (< 4.2) and Eh (> 450 mV) promote pyrite oxidation and mineral dissolution, releasing > 1 mM concentrations of Fe2+, Fe3+ and Al3+. However, certain oxidized clay zones containing no pyrite still inhibited bacterial growth. These clays buffered solutions to low pH (< 4.7) and oxidizing Eh (> 400 mV) conditions, releasing lower amounts (< 1 mM) of Fe and Al. The presence of carbonate in the clays eliminated antibacterial activity due to increases in pH, which lower pyrite oxidation and mineral dissolution rates.

The antibacterial mechanism of these natural clays was explored using metal toxicity and genetic assays, along with advanced bioimaging techniques. Antibacterial clays provide a continuous reservoir of Fe2+, Fe3+ and Al3+ that synergistically attack pathogens while generating hydrogen peroxide (H2O¬2). Results show that dissolved Fe2+ and Al3+ are adsorbed to bacterial envelopes, causing protein misfolding and oxidation in the outer membrane. Only Fe2+ is taken up by the cells, generating oxidative stress that damages DNA and proteins. Excess Fe2+ oxidizes inside the cell and precipitates Fe3+-oxides, marking the sites of hydroxyl radical (•OH) generation. Recognition of this novel geochemical antibacterial process should inform designs of new mineral based antibacterial agents and could provide a new economic industry for such clays.
ContributorsMorrison, Keith D (Author) / Williams, Lynda B (Thesis advisor) / Williams, Stanley N (Thesis advisor) / Misra, Rajeev (Committee member) / Shock, Everett (Committee member) / Anbar, Ariel (Committee member) / Arizona State University (Publisher)
Created2015
154927-Thumbnail Image.png
Description
Amorphous phases are detected over large regions of the Martian surface from orbit and in more localized deposits by rovers on the surface. Amorphous silicates can be primary or secondary in origin, both having formed through very different processes, so the unambiguous identification of these phases is important for understanding

Amorphous phases are detected over large regions of the Martian surface from orbit and in more localized deposits by rovers on the surface. Amorphous silicates can be primary or secondary in origin, both having formed through very different processes, so the unambiguous identification of these phases is important for understanding the geologic history of Mars. Secondary amorphous silicates are poorly understood and underrepresented in spectral libraries because they lack the long-range structural order that makes their crystalline counterparts identifiable in most analytical techniques. Fortunately, even amorphous materials have some degree of short-range order so that distinctions can be made with careful characterization.

Two sets of laboratory experiments were used to produce and characterize amorphous weathering products under probable conditions for the Martian surface, and one global spectral analysis using thermal-infrared (TIR) data from the Thermal Emission Spectrometer (TES) instrument was used to constrain variations in amorphous silicates across the Martian surface. The first set of experiments altered crystalline and glassy basalt samples in an open system under strong (pH 1) and moderate (pH 3) acidic conditions. The second set of experiments simulated a current-day Martian weathering scenario involving transient liquid water where basalt glass weathering solutions, formed in circumneutral (pH ~5.5 and 7) conditions, were rapidly evaporated, precipitating amorphous silicates. The samples were characterized using visible and near-infrared (VNIR) spectroscopy, TIR spectroscopy, scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), and X-ray diffraction (XRD).

All experiments formed amorphous silicate phases that are new to spectral libraries. Moderately acidic alteration experiments produced no visible or spectral evidence of alteration products, whereas exposure of basalt glass to strongly acidic fluids produced silica-rich alteration layers that are spectrally consistent with VNIR and TIR spectra from the circum-polar region of Mars, indicating this region has undergone acidic weathering. Circum-netural pH basalt weathering solution precipitates are consistent with amorphous materials measured by rovers in soil and rock surface samples in Gale and Gusev Craters, suggesting transient water interactions over the last 3 billion years. Global spectral analyses determine that alteration conditions have varied across the Martian surface, and that alteration has been long lasting.
ContributorsSmith, Rebecca (Author) / Christensen, Philip R. (Philip Russel) (Thesis advisor) / Shock, Everett (Committee member) / Hartnett, Hilairy (Committee member) / Shim, Sang-Heon (Committee member) / Sharp, Thomas (Committee member) / Arizona State University (Publisher)
Created2016
154903-Thumbnail Image.png
Description
Dust storms known as 'haboobs' occur in the City of Tempe, AZ during the North American monsoon season. A haboob classification method based on meteorological and air quality measurements is described. There were from 3 to 20 haboob events per year over the period from 2005 to 2014. The calculated

Dust storms known as 'haboobs' occur in the City of Tempe, AZ during the North American monsoon season. A haboob classification method based on meteorological and air quality measurements is described. There were from 3 to 20 haboob events per year over the period from 2005 to 2014. The calculated annual TSP (total suspended particulate) dry deposition during haboobs is estimated to contribute 74% of the total particulate mass deposited in Tempe, AZ.

Dry deposition is compared with the aqueous chemistry of Tempe Town Lake. Water management and other factors may have a stronger impact on Tempe Town Lake chemistry than haboob dry-deposition. Haboobs alter the Polycyclic Aromatic Hydrocarbon (PAH) concentrations and distributions in Tempe, AZ. PAH isomer ratios suggest PM2.5 (particulate matter with aerodynamic diameters less than or equal to 2.5 μm) sources consistent with approximate thunderstorm outflow paths.

The importance of the atmospheric aqueous phase, fogs and clouds, for the processing and removal of PAHs is not well known. A multiphase model was developed to determine the fate and lifetime of PAHs in fogs and clouds. The model employed literature values that describe the partitioning between three phases (aqueous, liquid organic, and gas), in situ PAH measurements, and experimental and estimated (photo)oxidation rates. At 25 °C, PAHs with two, three and four rings were predicted to be primarily gas phase (fraction in the gas phase xg > 90 %) while five- and six-ring PAHs partitioned significantly into droplets (xg < 60 %) with aqueous phase fractions of 1 to 6 % and liquid organic phase fractions of 31 to 91 %. The predicted atmospheric lifetimes of PAHs in the presence of fog or cloud droplets (< 5 hours) were significantly shorter than literature predictions of PAH wet and dry deposition lifetimes (1 to 14 days and 5 to 15 months respectively) and shorter than or equal to predicted PAH gas phase / particle phase atmospheric lifetimes (1 to 300 hours). The aqueous phase cannot be neglected as a PAH sink due to the large aqueous volume (vs. organic volume) and the relatively fast aqueous reactions.
ContributorsEagar, Jershon (Author) / Herckes, Pierre (Thesis advisor) / Hayes, Mark (Committee member) / Shock, Everett (Committee member) / Arizona State University (Publisher)
Created2016
154692-Thumbnail Image.png
Description
N-Nitrosodimethylamine (NDMA), a probable human carcinogen, has been found in clouds and fogs at concentration up to 500 ng/L and in drinking water as disinfection by-product. NDMA exposure to the general public is not well understood because of knowledge gaps in terms of occurrence, formation and fate both in air

N-Nitrosodimethylamine (NDMA), a probable human carcinogen, has been found in clouds and fogs at concentration up to 500 ng/L and in drinking water as disinfection by-product. NDMA exposure to the general public is not well understood because of knowledge gaps in terms of occurrence, formation and fate both in air and water. The goal of this dissertation was to contribute to closing these knowledge gaps on potential human NDMA exposure through contributions to atmospheric measurements and fate as well as aqueous formation processes.

Novel, sensitive methods of measuring NDMA in air were developed based on Solid Phase Extraction (SPE) and Solid Phase Microextraction (SPME) coupled to Gas Chromatography-Mass Spectrometry (GC-MS). The two measuring techniques were evaluated in laboratory experiments. SPE-GC-MS was applicable in ambient air sampling and NDMA in ambient air was found in the 0.1-13.0 ng/m3 range.

NDMA photolysis, the main degradation atmospheric pathway, was studied in the atmospheric aqueous phase. Water soluble organic carbon (WSOC) was found to have more impact than inorganic species on NDMA photolysis by competing with NDMA for photons and therefore could substantially increase the NDMA lifetime in the atmosphere. The optical properties of atmospheric WSOC were investigated in aerosol, fog and cloud samples and showed WSOC from atmospheric aerosols has a higher mass absorption efficiency (MAE) than organic matter in fog and cloud water, resulting from a different composition, especially in regards of volatile species, that are not very absorbing but abundant in fogs and clouds.

NDMA formation kinetics during chloramination were studied in aqueous samples including wastewater, surface water and ground water, at two monochloramine concentrations. A simple second order NDMA formation model was developed using measured NDMA and monochloramine concentrations at select reaction times. The model fitted the NDMA formation well (R2 >0.88) in all water matrices. The proposed model was then optimized and applied to fit the data of NDMA formation from natural organic matter (NOM) and model precursors in previously studies. By determining the rate constants, the model was able to describe the effect of water conditions such as DOC and pH on NDMA formation.
ContributorsZhang, Jinwei (Author) / Herckes, Pierre (Thesis advisor) / Westerhoff, Paul (Thesis advisor) / Fraser, Matthew (Committee member) / Shock, Everett (Committee member) / Arizona State University (Publisher)
Created2016
154067-Thumbnail Image.png
Description
Anxiety and depression are among the most prevalent disorders in youth, with prevalence rates ranging from 15% to 25% for anxiety and 5% to 14% for depression. Anxiety and depressive disorders cause significant impairment, fail to spontaneously remit, and have been prospectively linked to problematic substance use and legal problems

Anxiety and depression are among the most prevalent disorders in youth, with prevalence rates ranging from 15% to 25% for anxiety and 5% to 14% for depression. Anxiety and depressive disorders cause significant impairment, fail to spontaneously remit, and have been prospectively linked to problematic substance use and legal problems in adulthood. These disorders often share a high-degree of comorbidity in both clinical and community samples, with anxiety disorders typically preceding the onset of depression. Given the nature and consequences of anxiety and depressive disorders, a plethora of treatment and preventative interventions have been developed and tested with data showing significant pre to post to follow-up reductions in anxiety and depressive symptoms. However, little is known about the mediators by which these interventions achieve their effects. To address this gap in the literature, the present thesis study combined meta-analytic methods and path analysis to evaluate the effects of youth anxiety and depression interventions on outcomes and four theory-driven mediators using data from 55 randomized controlled trials (N = 11,413). The mediators included: (1) information-processing biases, (2) coping strategies, (3) social competence, and (4) physiological hyperarousal. Meta-analytic results showed that treatment and preventative interventions reliably produced moderate effect sizes on outcomes and three of the four mediators (information-processing biases, coping strategies, social competence). Most importantly, findings from the path analysis showed that changes in information-processing biases and coping strategies consistently mediated changes in outcomes for anxiety and depression at both levels of intervention, whereas gains in social competence and reductions in physiological hyperarousal did not emerge as significant mediators. Knowledge of the mediators underlying intervention effects is important because they can refine testable models of treatment and prevention efforts and identify which anxiety and depression components need to be packaged or strengthened to maximize intervention effects. Allocating additional resources to significant mediators has the potential to reduce costs associated with adopting and implementing evidence-based interventions and improve dissemination and sustainability in real-world settings, thus setting the stage to be more readily integrated into clinical and non-clinical settings on a large scale.
ContributorsStoll, Ryan (Author) / Pina, Armando A (Thesis advisor) / MacKinnon, David (Committee member) / Knight, George (Committee member) / Arizona State University (Publisher)
Created2015
152644-Thumbnail Image.png
Description
This dissertation is presented in two sections. First, I explore two methods of using stable isotope analysis to trace environmental and biogeochemical processes. Second, I present two related studies investigating student understanding of the biogeochemical concepts that underlie part one. Fe and Hg are each biogeochemically important elements in their

This dissertation is presented in two sections. First, I explore two methods of using stable isotope analysis to trace environmental and biogeochemical processes. Second, I present two related studies investigating student understanding of the biogeochemical concepts that underlie part one. Fe and Hg are each biogeochemically important elements in their own way. Fe is a critical nutrient for phytoplankton, while Hg is detrimental to nearly all forms of life. Fe is often a limiting factor in marine phytoplankton growth. The largest source, by mass, of Fe to the open ocean is windblown mineral dust, but other more soluble sources are more bioavailable. To look for evidence of these non-soil dust sources of Fe to the open ocean, I measured the isotopic composition of aerosol samples collected on Bermuda. I found clear evidence in the fine size fraction of a non-soil dust Fe source, which I conclude is most likely from biomass burning. Widespread adoption of compact fluorescent lamps (CFL) has increased their importance as a source of environmental Hg. Isotope analysis would be a useful tool in quantifying this impact if the isotopic composition of Hg from CFL were known. My measurements show that CFL-Hg is isotopically fractionated, in a unique pattern, during normal operation. This fractionation is large and has a distinctive, mass-independent signature, such that CFL Hg can be uniquely identified from other sources. Misconceptions research in geology has been a very active area of research, but student thinking regarding the related field of biogeochemistry has not yet been studied in detail. From interviews with 40 undergraduates, I identified over 150 specific misconceptions. I also designed a multiple-choice survey (concept inventory) to measure understanding of these same biogeochemistry concepts. I present statistical evidence, based on the Rasch model, for the reliability and validity of this instrument. This instrument will allow teachers and researchers to easily quantify learning outcomes in biogeochemistry and will complement existing concept inventories in geology, chemistry, and biology.
ContributorsMead, Chris (Author) / Anbar, Ariel (Thesis advisor) / Semken, Steven (Committee member) / Shock, Everett (Committee member) / Herckes, Pierre (Committee member) / Hartnett, Hilairy (Committee member) / Arizona State University (Publisher)
Created2014