Matching Items (216)
151485-Thumbnail Image.png
Description
Tesla turbo-machinery offers a robust, easily manufactured, extremely versatile prime mover with inherent capabilities making it perhaps the best, if not the only, solution for certain niche applications. The goal of this thesis is not to optimize the performance of the Tesla turbine, but to compare its performance with various

Tesla turbo-machinery offers a robust, easily manufactured, extremely versatile prime mover with inherent capabilities making it perhaps the best, if not the only, solution for certain niche applications. The goal of this thesis is not to optimize the performance of the Tesla turbine, but to compare its performance with various working fluids. Theoretical and experimental analyses of a turbine-generator assembly utilizing compressed air, saturated steam and water as the working fluids were performed and are presented in this work. A brief background and explanation of the technology is provided along with potential applications. A theoretical thermodynamic analysis is outlined, resulting in turbine and rotor efficiencies, power outputs and Reynolds numbers calculated for the turbine for various combinations of working fluids and inlet nozzles. The results indicate the turbine is capable of achieving a turbine efficiency of 31.17 ± 3.61% and an estimated rotor efficiency 95 ± 9.32%. These efficiencies are promising considering the numerous losses still present in the current design. Calculation of the Reynolds number provided some capability to determine the flow behavior and how that behavior impacts the performance and efficiency of the Tesla turbine. It was determined that turbulence in the flow is essential to achieving high power outputs and high efficiency. Although the efficiency, after peaking, begins to slightly taper off as the flow becomes increasingly turbulent, the power output maintains a steady linear increase.
ContributorsPeshlakai, Aaron (Author) / Phelan, Patrick (Thesis advisor) / Trimble, Steve (Committee member) / Wang, Liping (Committee member) / Arizona State University (Publisher)
Created2012
Description
Laboratory automation systems have seen a lot of technological advances in recent times. As a result, the software that is written for them are becoming increasingly sophisticated. Existing software architectures and standards are targeted to a wider domain of software development and need to be customized in order to use

Laboratory automation systems have seen a lot of technological advances in recent times. As a result, the software that is written for them are becoming increasingly sophisticated. Existing software architectures and standards are targeted to a wider domain of software development and need to be customized in order to use them for developing software for laboratory automation systems. This thesis proposes an architecture that is based on existing software architectural paradigms and is specifically tailored to developing software for a laboratory automation system. The architecture is based on fairly autonomous software components that can be distributed across multiple computers. The components in the architecture make use of asynchronous communication methodologies that are facilitated by passing messages between one another. The architecture can be used to develop software that is distributed, responsive and thread-safe. The thesis also proposes a framework that has been developed to implement the ideas proposed by the architecture. The framework is used to develop software that is scalable, distributed, responsive and thread-safe. The framework currently has components to control very commonly used laboratory automation devices such as mechanical stages, cameras, and also to do common laboratory automation functionalities such as imaging.
ContributorsKuppuswamy, Venkataramanan (Author) / Meldrum, Deirdre (Thesis advisor) / Collofello, James (Thesis advisor) / Sarjoughian, Hessam S. (Committee member) / Johnson, Roger (Committee member) / Arizona State University (Publisher)
Created2012
152035-Thumbnail Image.png
Description
Coccidioidomycosis, also known as Valley Fever, is a disease caused by the dimorphic soil-dwelling fungus, Coccidioides sp. Coccidioidomycosis is difficult to diagnose because symptoms are similar to community-acquired pneumonia. Current diagnostic tests rely on antibody responses, but immune responses can be delayed and aberrant, resulting in false negative diagnoses. Unlike

Coccidioidomycosis, also known as Valley Fever, is a disease caused by the dimorphic soil-dwelling fungus, Coccidioides sp. Coccidioidomycosis is difficult to diagnose because symptoms are similar to community-acquired pneumonia. Current diagnostic tests rely on antibody responses, but immune responses can be delayed and aberrant, resulting in false negative diagnoses. Unlike serology, detection of coccidioidal proteins or other fungal components in blood could distinguish valley fever from other pulmonary infections and provide a definitive diagnosis. Using mass spectrometry (LC-MS/MS) we examined the plasma peptidome from patients with serologically confirmed coccidioidomycosis. Mass spectra were searched using the protein database from the Coccidioides species, generated and annotated by the Broad Institute. 15 of 20 patients with serologically confirmed coccidioidomycosis demonstrated the presence of a peptide in plasma, "PGLDSKSLACTFSQV" (PGLD). The peptide is derived from an open reading frame from a "conserved hypothetical protein" annotated with 2 exons, and to date, found only in the C. posadasii strain Silviera RMSCC 3488 genomic sequence. In this thesis work, cDNA sequence analysis from polyadenylated RNA confirms the peptide sequence and genomic location of the peptide, but does not indicate that the intron in the gene prediction of C. posadasii strain Silviera RMSCC 3488 is present. A monoclonal antibody generated against the peptide bound to a 16kDa protein in T27K coccidioidal lysate. Detecting components of the fungus plasma could be a useful diagnostic tool, especially when serology does not provide a definitive diagnosis.
ContributorsDuffy, Stacy Leigh (Author) / Lake, Douglas (Thesis advisor) / Magee, Dewey Mitch (Committee member) / Antwi, Kwasi (Committee member) / Arizona State University (Publisher)
Created2013
152123-Thumbnail Image.png
Description
This dissertation investigates the condition of skeletal muscle insulin resistance using bioinformatics and computational biology approaches. Drawing from several studies and numerous data sources, I have attempted to uncover molecular mechanisms at multiple levels. From the detailed atomistic simulations of a single protein, to datamining approaches applied at the systems

This dissertation investigates the condition of skeletal muscle insulin resistance using bioinformatics and computational biology approaches. Drawing from several studies and numerous data sources, I have attempted to uncover molecular mechanisms at multiple levels. From the detailed atomistic simulations of a single protein, to datamining approaches applied at the systems biology level, I provide new targets to explore for the research community. Furthermore I present a new online web resource that unifies various bioinformatics databases to enable discovery of relevant features in 3D protein structures.
ContributorsMielke, Clinton (Author) / Mandarino, Lawrence (Committee member) / LaBaer, Joshua (Committee member) / Magee, D. Mitchell (Committee member) / Dinu, Valentin (Committee member) / Willis, Wayne (Committee member) / Arizona State University (Publisher)
Created2013
150818-Thumbnail Image.png
Description
While exercising mammalian muscle increasingly relies on carbohydrates for fuel as aerobic exercise intensity rises above the moderate range, flying birds are extraordinary endurance athletes and fuel flight, a moderate-high intensity exercise, almost exclusively with lipid. In addition, Aves have long lifespans compared to weight-matched mammals. As skeletal muscle mitochondria

While exercising mammalian muscle increasingly relies on carbohydrates for fuel as aerobic exercise intensity rises above the moderate range, flying birds are extraordinary endurance athletes and fuel flight, a moderate-high intensity exercise, almost exclusively with lipid. In addition, Aves have long lifespans compared to weight-matched mammals. As skeletal muscle mitochondria account for the majority of oxygen consumption during aerobic exercise, the primary goal was to investigate differences in isolated muscle mitochondria between these species and to examine to what extent factors intrinsic to mitochondria may account for the behavior observed in the intact tissue and whole organism. First, maximal enzyme activities were assessed in sparrow and rat mitochondria. Citrate synthase and aspartate aminotransferase activity were higher in sparrow compared to rat mitochondria, while glutamate dehydrogenase activity was lower. Sparrow mitochondrial NAD-linked isocitrate dehydrogenase activity was dependent on phosphate, unlike the mammalian enzyme. Next, the rate of oxygen consumption (JO), electron transport chain (ETC) activity, and reactive oxygen species (ROS) production were assessed in intact mitochondria. Maximal rates of fat oxidation were lower than for carbohydrate in rat but not sparrow mitochondria. ETC activity was higher in sparrows, but no differences were found in ROS production between species. Finally, fuel selection and control of respiration at three rates between rest and maximum were assessed. Mitochondrial fuel oxidation and selection mirrored that of the whole body; in rat mitochondria the reliance on carbohydrate increased as the rate of oxygen consumption increased, whereas fat dominated under all conditions in the sparrow. These data indicate fuel selection, at least in part, can be modulated at the level of the mitochondrial matrix when multiple substrates are present at saturating levels. As an increase in matrix oxidation-reduction potential has been linked to a suppression of fat oxidation and high ROS production, the high ETC activity relative to dehydrogenase activity in avian compared to mammalian mitochondria may result in lower matrix oxidation-reduction potential, allowing fatty acid oxidation to proceed while also resulting in low ROS production in vivo.
ContributorsKuzmiak, Sarah (Author) / Willis, Wayne T (Thesis advisor) / Mandarino, Lawrence (Committee member) / Sweazea, Karen (Committee member) / Harrison, Jon (Committee member) / Gadau, Juergen (Committee member) / Arizona State University (Publisher)
Created2012
150749-Thumbnail Image.png
Description
Biological soil crusts (BSCs) are critical components of arid and semiarid environments and provide the primary sources of bioavailable macronutrients and increase micronutrient availability to their surrounding ecosystems. BSCs are composed of a variety of microorganisms that perform a wide range of physiological processes requiring a multitude of bioessential micronutrients,

Biological soil crusts (BSCs) are critical components of arid and semiarid environments and provide the primary sources of bioavailable macronutrients and increase micronutrient availability to their surrounding ecosystems. BSCs are composed of a variety of microorganisms that perform a wide range of physiological processes requiring a multitude of bioessential micronutrients, such as iron, copper, and molybdenum. This work investigated the effects of BSC activity on soil solution concentrations of bioessential elements and examined the microbial production of organic chelators, called siderophores. I found that aluminum, vanadium, copper, zinc, and molybdenum were solubilized in the action of crusts, while nickel, zinc, arsenic, and zirconium were immobilized by crust activity. Potassium and manganese displayed behavior consistent with biological removal and mobilization, whereas phosphorus and iron solubility were dominated by abiotic processes. The addition of bioavailable nitrogen altered the effects of BSCs on soil element mobilization. In addition, I found that the biogeochemical activites of BSCs were limited by molybdenum, a fact that likely contributes to co-limitation by nitrogen. I confirmed the presence of siderophore producing microbes in BSCs. Siderophores are low-molecular weight organic compounds that are released by bacteria to increase element solubility and facilitate element uptake; siderophore production is likely the mechanism by which BSCs affect the patterns I observed in soil solution element concentrations. Siderophore producers were distributed across a range of bacterial groups and ecological niches within crusts, suggesting that siderophore production influences the availability of a variety of elements for use in many physiological processes. Four putative siderophore compounds were identified using electrospray ionization mass spectrometry; further attempts to characterize the compounds confirmed two true siderophores. Taken together, the results of my work provide information about micronutrient cycling within crusts that can be applied to BSC conservation and management. Fertilization with certain elements, particularly molybdenum, may prove to be a useful technique to promote BSC growth and development which would help prevent arid land degradation. Furthermore, understanding the effects of BSCs on soil element mobility could be used to develop useful biomarkers for the study of the existence and distribution of crust-like communities on ancient Earth, and perhaps other places, like Mars.
ContributorsNoonan, Kathryn Alexander (Author) / Hartnett, Hilairy (Thesis advisor) / Anbar, Ariel (Committee member) / Garcia-Pichel, Ferran (Committee member) / Shock, Everett (Committee member) / Sharp, Thomas (Committee member) / Arizona State University (Publisher)
Created2012
150779-Thumbnail Image.png
Description
Ponderosa pine forests are a dominant land cover type in semiarid montane areas. Water supplies in major rivers of the southwestern United States depend on ponderosa pine forests since these ecosystems: (1) receive a significant amount of rainfall and snowfall, (2) intercept precipitation and transpire water, and (3) indirectly influence

Ponderosa pine forests are a dominant land cover type in semiarid montane areas. Water supplies in major rivers of the southwestern United States depend on ponderosa pine forests since these ecosystems: (1) receive a significant amount of rainfall and snowfall, (2) intercept precipitation and transpire water, and (3) indirectly influence runoff by impacting the infiltration rate. However, the hydrologic patterns in these ecosystems with strong seasonality are poorly understood. In this study, we used a distributed hydrologic model evaluated against field observations to improve our understandings on spatial controls of hydrologic patterns, appropriate model resolution to simulate ponderosa pine ecosystems and hydrologic responses in the context of contrasting winter to summer transitions. Our modeling effort is focused on the hydrologic responses during the North American Monsoon (NAM), winter and spring periods. In Chapter 2, we utilized a distributed model explore the spatial controls on simulated soil moisture and temporal evolution of these spatial controls as a function of seasonal wetness. Our findings indicate that vegetation and topographic curvature are spatial controls. Vegetation controlled patterns during dry summer period switch to fine-scale terrain curvature controlled patterns during persistently wet NAM period. Thus, a climatic threshold involving rainfall and weather conditions during the NAM is identified when high rainfall amount (such as 146 mm rain in August, 1997) activates lateral flux of soil moisture and frequent cloudy cover (such as 42% cloud cover during daytime of August, 1997) lowers evapotranspiration. In Chapter 3, we investigate the impacts of model coarsening on simulated soil moisture patterns during the NAM. Results indicate that model aggregation quickly eradicates curvature features and its spatial control on hydrologic patterns. A threshold resolution of ~10% of the original terrain is identified through analyses of homogeneity indices, correlation coefficients and spatial errors beyond which the fidelity of simulated soil moisture is no longer reliable. Based on spatial error analyses, we detected that the concave areas (~28% of hillslope) are very sensitive to model coarsening and root mean square error (RMSE) is higher than residual soil moisture content (~0.07 m3/m3 soil moisture) for concave areas. Thus, concave areas need to be sampled for capturing appropriate hillslope response for this hillslope. In Chapter 4, we investigate the impacts of contrasting winter to summer transitions on hillslope hydrologic responses. We use a distributed hydrologic model to generate a consistent set of high-resolution hydrologic estimates. Our model is evaluated against the snow depth, soil moisture and runoff observations over two water years yielding reliable spatial distributions during the winter to summer transitions. We find that a wet winter followed by a dry summer promotes evapotranspiration losses (spatial averaged ~193 mm spring ET and ~ 600 mm summer ET) that dry the soil and disconnect lateral fluxes in the forested hillslope, leading to soil moisture patterns resembling vegetation patches. Conversely, a dry winter prior to a wet summer results in soil moisture increases due to high rainfall and low ET during the spring (spatially averaged 78 mm ET and 232 mm rainfall) and summer period (spatially averaged 147 mm ET and 247 mm rainfall) which promote lateral connectivity and soil moisture patterns with the signature of terrain curvature. An opposing temporal switch between infiltration and saturation excess runoff is also identified. These contrasting responses indicate that the inverse relation has significant consequences on hillslope water availability and its spatial distribution with implications on other ecohydrological processes including vegetation phenology, groundwater recharge and geomorphic development. Results from this work have implications on the design of hillslope experiments, the resolution of hillslope scale models, and the prediction of hydrologic conditions in ponderosa pine ecosystems. In addition, our findings can be used to select future hillslope sites for detailed ecohydrological investigations. Further, the proposed methodology can be useful for predicting responses to climate and land cover changes that are anticipated for the southwestern United States.
ContributorsMahmood, Taufique Hasan (Author) / Vivoni, Enrique R. (Thesis advisor) / Whipple, Kelin X. (Committee member) / Shock, Everett (Committee member) / Heimsath, Arjun M. (Committee member) / Ruddell, Benjamin (Committee member) / Arizona State University (Publisher)
Created2012
151223-Thumbnail Image.png
Description
Early spacecraft missions to Mars, including the Marnier and Viking orbiters and landers revealed a morphologically and compositionally diverse landscape that reshaped widely held views of Mars. More recent spacecraft including Mars Global Surveyor, Mars Odyssey, Mars Express, Mars Reconnaissance Orbiter, and the Mars Exploration Rovers have further refined, enhanced,

Early spacecraft missions to Mars, including the Marnier and Viking orbiters and landers revealed a morphologically and compositionally diverse landscape that reshaped widely held views of Mars. More recent spacecraft including Mars Global Surveyor, Mars Odyssey, Mars Express, Mars Reconnaissance Orbiter, and the Mars Exploration Rovers have further refined, enhanced, and diversified our understanding of Mars. In this dissertation, I take a multiple-path approach to planetary and Mars science including data analysis and instrument development. First, I present several tools necessary to effectively use new, complex datasets by highlighting unique and innovative data processing techniques that allow for the regional to global scale comparison of multiple datasets. Second, I present three studies that characterize several processes on early Mars, where I identify a regional, compositionally distinct, in situ, stratigraphically significant layer in Ganges and Eos Chasmata that formed early in martian history. This layer represents a unique period in martian history where primitive mantle materials were emplaced over large sections of the martian surface. While I originally characterized this layer as an effusive lava flow, based on the newly identified regional or global extent of this layer, I find the only likely scenario for its emplacement is the ejecta deposit of the Borealis Basin forming impact event. I also re-examine high thermal inertia, flat-floored craters identified in Viking data and conclude they are typically more mafic than the surrounding plains and were likely infilled by primitive volcanic materials during, or shortly after the Late Heavy Bombardment. Furthermore, the only plausible source for these magmas is directly related to the impact process, where mantle decompression melting occurs as result of the removal of overlying material by the impactor. Finally, I developed a new laboratory microscopic emission and reflectance spectrometer designed to help improve the interpretation of current remote sensing or in situ data from planetary bodies. I present the design, implementation, calibration, system performance, and preliminary results of this instrument. This instrument is a strong candidate for the next generation in situ rover instruments designed to definitively assess sample mineralogy and petrology while preserving geologic context.
ContributorsEdwards, Christopher (Author) / Christensen, Philip R. (Thesis advisor) / Bell, James (Committee member) / Sharp, Thomas (Committee member) / Clarke, Amanda B (Committee member) / Shock, Everett (Committee member) / Arizona State University (Publisher)
Created2012
151177-Thumbnail Image.png
Description
Single cell analysis has become increasingly important in understanding disease onset, progression, treatment and prognosis, especially when applied to cancer where cellular responses are highly heterogeneous. Through the advent of single cell computerized tomography (Cell-CT), researchers and clinicians now have the ability to obtain high resolution three-dimensional (3D) reconstructions of

Single cell analysis has become increasingly important in understanding disease onset, progression, treatment and prognosis, especially when applied to cancer where cellular responses are highly heterogeneous. Through the advent of single cell computerized tomography (Cell-CT), researchers and clinicians now have the ability to obtain high resolution three-dimensional (3D) reconstructions of single cells. Yet to date, no live-cell compatible version of the technology exists. In this thesis, a microfluidic chip with the ability to rotate live single cells in hydrodynamic microvortices about an axis parallel to the optical focal plane has been demonstrated. The chip utilizes a novel 3D microchamber design arranged beneath a main channel creating flow detachment into the chamber, producing recirculating flow conditions. Single cells are flowed through the main channel, held in the center of the microvortex by an optical trap, and rotated by the forces induced by the recirculating fluid flow. Computational fluid dynamics (CFD) was employed to optimize the geometry of the microchamber. Two methods for the fabrication of the 3D microchamber were devised: anisotropic etching of silicon and backside diffuser photolithography (BDPL). First, the optimization of the silicon etching conditions was demonstrated through design of experiment (DOE). In addition, a non-conventional method of soft-lithography was demonstrated which incorporates the use of two positive molds, one of the main channel and the other of the microchambers, compressed together during replication to produce a single ultra-thin (<200 µm) negative used for device assembly. Second, methods for using thick negative photoresists such as SU-8 with BDPL have been developed which include a new simple and effective method for promoting the adhesion of SU-8 to glass. An assembly method that bonds two individual ultra-thin (<100 µm) replications of the channel and the microfeatures has also been demonstrated. Finally, a pressure driven pumping system with nanoliter per minute flow rate regulation, sub-second response times, and < 3% flow variability has been designed and characterized. The fabrication and assembly of this device is inexpensive and utilizes simple variants of conventional microfluidic fabrication techniques, making it easily accessible to the single cell analysis community.
ContributorsMyers, Jakrey R (Author) / Meldrum, Deirdre (Thesis advisor) / Johnson, Roger (Committee member) / Frakes, David (Committee member) / Arizona State University (Publisher)
Created2012
151140-Thumbnail Image.png
Description
Molybdenum and uranium isotope variations are potentially powerful tools for reconstructing the paleoredox history of seawater. Reliable application and interpretation of these proxies requires not only detailed knowledge about the fractionation factors that control the distribution of molybdenum and uranium isotopes in the marine system, but also a thorough understanding

Molybdenum and uranium isotope variations are potentially powerful tools for reconstructing the paleoredox history of seawater. Reliable application and interpretation of these proxies requires not only detailed knowledge about the fractionation factors that control the distribution of molybdenum and uranium isotopes in the marine system, but also a thorough understanding of the diagenetic processes that may affect molybdenum and uranium isotopes entering the rock record. Using samples from the Black Sea water column, the first water column profile of 238U/235U variations from a modern euxinic basin has been measured. This profile allows the direct determination of the 238U/235U fractionation factor in a euxinic marine setting. More importantly however, these data demonstrate the extent of Rayleigh fractionation of U isotopes that can occur in euxinic restricted basins. Because of this effect, the offset of 238U/235U between global average seawater and coeval black shales deposited in restricted basins is expected to depend on the degree of local uranium drawdown from the water column, potentially complicating the interpretation 238U/235U paleorecords. As an alternative to the black shales typically used for paleoredox reconstructions, molybdenum and uranium isotope variations in bulk carbonate sediments from the Bahamas are examined. The focus of this work was to determine what processes, if any, fractionate molybdenum and uranium isotopes during incorporation into bulk carbonate sediments and their subsequent diagenesis. The results demonstrate that authigenic accumulation of molybdenum and uranium from anoxic and sulfidic pore waters is a dominant process controlling the concentration and isotopic composition of these sediments during early diagenesis. Examination of ODP drill core samples from the Bahamas reveals similar behavior for sediments during the first ~780ka of burial, but provides important examples where isolated cores and samples occasionally demonstrate additional fractionation, the cause of which remains poorly understood.
ContributorsRomaniello, Stephen J. (Author) / Anbar, Ariel (Thesis advisor) / Hartnett, Hilairy (Committee member) / Herrmann, Achim (Committee member) / Shock, Everett (Committee member) / Wadhwa, Meenakshi (Committee member) / Arizona State University (Publisher)
Created2012