Matching Items (493)
Filtering by

Clear all filters

133360-Thumbnail Image.png
Description
This study asks the question: does gender-based discrimination exists within Arizona State University's Army Reserve Officer Training Corps (ROTC), and if so, what are the effects of such discrimination? Within this study, discrimination is defined as: the treatment or consideration of, or making a distinction in favor of or against,

This study asks the question: does gender-based discrimination exists within Arizona State University's Army Reserve Officer Training Corps (ROTC), and if so, what are the effects of such discrimination? Within this study, discrimination is defined as: the treatment or consideration of, or making a distinction in favor of or against, a person or thing based on the group, class, or category to which that person or thing belongs, rather than on individual merit. The researcher predicted that this study would show that gender-based discrimination operates within the masculine military culture of Army ROTC at ASU, resulting from women's hyper-visibility and evidenced by their lack of positive recognition and disbelief in having a voice in the program. These expectations were based on background research claiming that the token status of women in military roles causes them to be more heavily scrutinized, and they consequentially try to attain success by adapting to the masculine military culture by which they are constantly measured. For the purposes of this study, success is defined as: the attainment of wealth, favor, or eminence . This study relies on exploratory interviews and an online survey conducted with male and female Army ROTC cadets of all grade levels at Arizona State University. The interviews and survey collected demographic information and perspectives on individual experiences to establish an understanding of privilege and marginalization within the program. These results do support the prediction that women in Army ROTC at ASU face discrimination based on their unique visibility and lack of positive recognition and voice in the program. Likewise, the survey results indicate that race also has a significant impact on one's experience in Army ROTC, which is discussed later in this study in regard to needs for future research. ASU Army ROTC includes approximately 100 cadets, and approximately 30-40 of those cadets participated in this study. Additionally, the University of Arizona and the Northern Arizona University Army ROTC programs were invited to participate in this study and declined to do so, which would have offered a greater sample population. Nonetheless, the results of this research will be useful for analysis and further discussion of gender-equality in Army ROTC at Arizona State University.
ContributorsAllemang, Lindsey Ann (Author) / Wood, Reed (Thesis director) / Switzer, Heather (Committee member) / School of Politics and Global Studies (Contributor) / School of Social Transformation (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
133370-Thumbnail Image.png
Description
The focus of human decomposition studies has traditionally been on how external factors affect the decomposition of a body. There is much less literature on how the decomposition of a human cadaver affects its local ecosystem. This study attempts to address the knowledge gap in current literature regarding how the

The focus of human decomposition studies has traditionally been on how external factors affect the decomposition of a body. There is much less literature on how the decomposition of a human cadaver affects its local ecosystem. This study attempts to address the knowledge gap in current literature regarding how the decomposition of human cadavers affects the bioavailability of essential plant nutrients (P, K, Ca, Fe, C and N) as well as toxins (As and Pb) in soil. By studying the bioavailability of plant nutrients, especially nitrogen, and toxins, this research hopes to inform new technologies and techniques for locating clandestine gravesites. The objectives of this study were twofold: 1) determine whether soils exposed to cadaveric decomposition can be visually distinguished from one another via macroscopic and microscopic observation and 2) observe general changes in nutrient and toxic element bioavailability and changes in carbon and nitrogen isotope ratios over time as well as spatially across a body. Visual analyses of soil samples, both macro- and microscopically did not show potential in distinguishing soil exposed to cadaver decomposition from unexposed soil. Relative bioavailability as well as overall bioavailable concentrations of both plant nutrients and toxins were highly elevated after 12 months. Toxins, such as As and Pb, tended to have greater bioavailable concentrations at the near-torso positions, though no consistent spatial trends between nutrient bioavailable concentrations were observed between the three individuals. Nitrogen concentrations and nitrogen isotope (δ15N) ratios show strong potential as markers of clandestine graves throughout the study period. While this research demonstrates further need to uncover what factors influence bioavailability of elements in gravesoil, it shows that the bioavailability of plant nutrients and toxins as well as δ15N ratios are greatly affected by cadaver decomposition, and emerging technologies in gravesite detection based on plant or soil changes have a solid foundation.
ContributorsAnderson, Sara Rae (Author) / Kobojek, Kimberly (Thesis director) / Gordon, Gwyneth (Committee member) / School of Mathematical and Natural Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
133378-Thumbnail Image.png
Description
The number of undergraduate students participating in short-term experiences in global health (STEGHs) abroad has increased dramatically in recent years (Eyler 2002, Drain et al. 2007). These experiences, in tandem with classroom learning, are designed to help students master skills related to global health competencies, including cultural humility and sensitivity,

The number of undergraduate students participating in short-term experiences in global health (STEGHs) abroad has increased dramatically in recent years (Eyler 2002, Drain et al. 2007). These experiences, in tandem with classroom learning, are designed to help students master skills related to global health competencies, including cultural humility and sensitivity, collaborating with community partners, and sociocultural and political awareness. Although STEGHs offer potential benefits to both students and to sending institutions, these experiences can sometimes be problematic and raise ethical challenges. As the number of students engaged in STEGHs continues to increase, it is important to better understand the impact of these programs on student learning. Current ethical and best practice guidelines for STEGHs state that programs should establish evaluation methods to solicit feedback from students both during and on completion of the program (Crump et al. 2010). However, there is currently no established method for gathering this feedback because of the many different global health competency frameworks, types and duration of programs, and different models of student engagement in such programs. Assessing the quality of a STEGH is a profoundly important and difficult question that cannot be answered as succinctly and quantitatively as classroom performance, which has more standard and established assessment metrics. The goal of this project is to identify the most appropriate and useful assessment metric(s) for determining educational quality and impact for STEGHs at ASU by comparing a typical quantitative evaluation tool (pre-post survey with brief open-ended questions) to a more in-depth qualitative method (key informant interviews). In performing my analysis I seek to examine if the latter can produce a richer narrative of student experiences to inform ongoing program evaluations. My research questions are: 1. What are the current qualitative and quantitative evaluation methods available to assess student learning during short-term experiences in global health? 2. How can current methodology for assessing student experiences with short-term experiences in global health be adapted to collect the most information from students? 3. How do student knowledge and attitudes change before and after their short-term experience in global health? Why is understanding those changes important for adapting programs? My end goal would be to use these new, optimal assessment methods for gathering student perspectives and experiences to adapt pre-departure trainings and post-experience debriefings for study abroad programs, both of which I believe will lead to more sustainable partnerships and a healthier understanding of global health work for students.
ContributorsHale, Brittany Ann (Author) / Jehn, Megan (Thesis director) / Wutich, Amber (Committee member) / School of Human Evolution and Social Change (Contributor) / School of Social Transformation (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
131495-Thumbnail Image.png
Description
Criminal Justice is a complex subject matter, and not everyone agrees on the way a criminal justice system ought to function. But one feature that is common to virtually all forms of proposed justice systems is that a true justice system treats people ethically. The question, then, is how a

Criminal Justice is a complex subject matter, and not everyone agrees on the way a criminal justice system ought to function. But one feature that is common to virtually all forms of proposed justice systems is that a true justice system treats people ethically. The question, then, is how a justice system can achieve this. This investigation analyzed two ethical theories, Kantianism and Utilitarianism, to determine which one would be better suited for guiding a criminal justice system on how to treat the people involved ethically. This investigation focused on applying the two theories to the U.S. Criminal Justice System in particular.
Kantianism is a duty-based moral theory in which actions have an intrinsic moral worth. This means certain actions are morally right and other are morally wrong, regardless of the intended or realized consequences. The theory relies on the categorical imperative to judge the morality of certain actions. It states that an action is moral if its maxim can be willed universal law and if it avoids treating people as merely a means. In contrast, Utilitarianism is a consequentialist theory which focuses on the consequences of an action in judging moral worth. In Utilitarianism, the morally correct action is the one which will maximize utility; that is to say, the morally right action is the one which will produce the greatest amount of happiness and minimize the amount of pain for the greatest number of people.
After applying these two theories to moral dilemmas facing the U.S. Criminal Justice System, including the appropriate collection of DNA evidence, the use of police deception, and the use of criminal punishments such as solitary confinement or the death penalty, it was clear that Kantianism was the ethical theory best suited for guiding the system in treating people ethically. This is because Kantianism’s focus on the intrinsic moral worth of an action rather than its consequences leaves less room for ambiguity than does Utilitarianism.
ContributorsMorett, Xavier Laakea (Author) / Manninen, Bertha (Thesis director) / Kimberly, Kobojek (Committee member) / School of Criminology and Criminal Justice (Contributor) / School of Mathematical and Natural Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
131496-Thumbnail Image.png
Description
Genocide studies have traditionally focused on the perpetrator’s intent to eradicate a particular identity-based group, using the Holocaust as their model and point of comparison. Although some aspects of the Holocaust were undoubtedly unique, recent scholars have sought to challenge the notion that it was a singular phenomenon. Instead, they

Genocide studies have traditionally focused on the perpetrator’s intent to eradicate a particular identity-based group, using the Holocaust as their model and point of comparison. Although some aspects of the Holocaust were undoubtedly unique, recent scholars have sought to challenge the notion that it was a singular phenomenon. Instead, they draw attention to a recurring pattern of genocidal events throughout history by shifting the focus from intent to structure. One particular branch of scholars seeks to connect the ideology and tactics of imperialism with certain genocidal events. These anti-imperialist genocide scholars concede that their model cannot account for all genocides, but still claim that it creates meaningful connections between genocides committed by Western colonialist powers and those that have occurred in a neoimperialist world order shaped according to Western interests. The latter includes genocides in postcolonial states, which these scholars believe were shaped by the scars of their colonial past, as well as genocides in which imperial hegemons assisted local perpetrators. Imperialist and former colonial powers have contributed meaningfully to all of these kinds of genocides, yet their contributions have largely been ignored due to their own influence on the creation of the current international order. Incorporating the anti-imperialist perspective into the core doctrine of genocide studies may lead to breakthroughs in areas of related policy and practice, such as prevention and accountability.
ContributorsParker, Ashleigh Mae (Author) / Thies, Cameron (Thesis director) / Sivak, Henry (Committee member) / School of Politics and Global Studies (Contributor) / School of Social Transformation (Contributor) / Department of English (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
131505-Thumbnail Image.png
Description
Calcium is the only ion capable of triggering electrical and chemical reactions in cells which are part of essential biomolecular processes, such as gene transcription and ion flux. Calcium homeostasis, the control of concentration levels, is therefore crucial for the proper functioning of cells. For example, cardiomyocytes, the cells that

Calcium is the only ion capable of triggering electrical and chemical reactions in cells which are part of essential biomolecular processes, such as gene transcription and ion flux. Calcium homeostasis, the control of concentration levels, is therefore crucial for the proper functioning of cells. For example, cardiomyocytes, the cells that form cardiac muscle, rely on calcium transfer process to produce muscle contraction.
The purpose of this work is to study aspects of calcium homeostasis in the model organism Saccharomyces cerevisiae, common yeast. Using luminometric techniques, the response of the yeast was monitored against a set of changes in the environment calcium abundance. The results indicate a complex response as both increase and decreases of external calcium induce elevations in cytosolic calcium concentrations.
Calcium is transferred across compartments by means of channels. In Saccharomyces cerevisiae, many of them have been identified; Cch1p-Mid1p, Vcx1p, Pmc1p, Pmr1p, and Yvc1p. Their participation in calcium homeostasis is well established. Observations of cytosolic calcium increase after a hypertonic shock are mainly associated with influx of ions from the environment though the Cch1p-Mid1p. This process is generally considered as driven by calcium concentration gradients. However, recent studies have suggested that the plasma membrane channel, Cch1p-Mid1p, may possess more sophisticated regulation and sensory mechanisms. The results of our experiments support these ideas.
We carried out experiments that subjected yeast to multiple shocks: a hypertonic shock followed by either a second hypertonic shock, a hypotonic shock, or a yeast dilution pulse where the solution volume increases by the calcium concentration has only a small change. The cytosolic calcium concentration of a yeast population was monitored via luminometry.
The main result of this study is the observation of an unexpected response to the combination of hypertonic and hypotonic shocks. In this case it was observed that the cytosolic calcium concentration increased after both shocks. This indicates that cytosolic calcium increases are not solely driven by the presence of concentration gradients. The response after the hypotonic pulse arises from more complex mechanisms that may include sensor activity at the membrane channels and the release of calcium from internal storages.
ContributorsMintz, David Anthony (Co-author) / Parker, Augustus (Co-author) / Solis, Francisco (Thesis director) / Marshall, Pamela (Committee member) / School of Mathematical and Natural Sciences (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
131506-Thumbnail Image.png
Description
Calcium is the only ion capable of triggering electrical and chemical reactions in cells which are part of essential biomolecular processes, such as gene transcription and ion flux. Calcium homeostasis, the control of concentration levels, is therefore crucial for the proper functioning of cells. For example, cardiomyocytes, the cells that

Calcium is the only ion capable of triggering electrical and chemical reactions in cells which are part of essential biomolecular processes, such as gene transcription and ion flux. Calcium homeostasis, the control of concentration levels, is therefore crucial for the proper functioning of cells. For example, cardiomyocytes, the cells that form cardiac muscle, rely on calcium transfer process to produce muscle contraction.
The purpose of this work is to study aspects of calcium homeostasis in the model organism Saccharomyces cerevisiae, common yeast. Using luminometric techniques, the response of the yeast was monitored against a set of changes in the environment calcium abundance. The results indicate a complex response as both increase and decreases of external calcium induce elevations in cytosolic calcium concentrations.
Calcium is transferred across compartments by means of channels. In Saccharomyces cerevisiae, many of them have been identified; Cch1p-Mid1p, Vcx1p, Pmc1p, Pmr1p, and Yvc1p. Their participation in calcium homeostasis is well established. Observations of cytosolic calcium increase after a hypertonic shock are mainly associated with influx of ions from the environment though the Cch1p-Mid1p. This process is generally considered as driven by calcium concentration gradients. However, recent studies have suggested that the plasma membrane channel, Cch1p-Mid1p, may possess more sophisticated regulation and sensory mechanisms. The results of our experiments support these ideas.
We carried out experiments that subjected yeast to multiple shocks: a hypertonic shock followed by either a second hypertonic shock, a hypotonic shock, or a yeast dilution pulse where the solution volume increases by the calcium concentration has only a small change. The cytosolic calcium concentration of a yeast population was monitored via luminometry.
The main result of this study is the observation of an unexpected response to the combination of hypertonic and hypotonic shocks. In this case it was observed that the cytosolic calcium concentration increased after both shocks. This indicates that cytosolic calcium increases are not solely driven by the presence of concentration gradients. The response after the hypotonic pulse arises from more complex mechanisms that may include sensor activity at the membrane channels and the release of calcium from internal storages.
ContributorsParker, Augustus Carrucciu (Co-author) / Mintz, David (Co-author) / Solis, Francisco (Thesis director) / Marshall, Pamela (Committee member) / School of Mathematical and Natural Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
131513-Thumbnail Image.png
Description
Cellular and molecular biologists often perform cellular assays to obtain a better understanding of how cells work. However, in order to obtain a measurable response by the end of an experiment, the cells must reach an ideal cell confluency. Prior to conducting the cellular assays, range-finding experiments need to be

Cellular and molecular biologists often perform cellular assays to obtain a better understanding of how cells work. However, in order to obtain a measurable response by the end of an experiment, the cells must reach an ideal cell confluency. Prior to conducting the cellular assays, range-finding experiments need to be conducted to determine an initial plating density that will result in this ideal confluency, which can be costly. To help alleviate this common issue, a mathematical model was developed that describes the dynamics of the cell population used in these experiments. To develop the model, images of cells from different three-day experiments were analyzed in Photoshop®, giving a measure of cell count and confluency (the percentage of surface area covered by cells). The cell count data were then fitted into an exponential growth model and were correlated to the cell confluency to obtain a relationship between the two. The resulting mathematical model was then evaluated with data from an independent experiment. Overall, the exponential growth model provided a reasonable and robust prediction of the cell confluency, though improvements to the model can be made with a larger dataset. The approach used to develop this model can be adapted to generate similar models of different cell-lines, which will reduce the number of preliminary range-finding experiments. Reducing the number of these preliminary experiments can save valuable time and experimental resources needed to conduct studies using cellular assays.
ContributorsGuerrero, Victor Dominick (Co-author) / Guerrero, Victor (Co-author) / Watanabe, Karen (Thesis director) / Jurutka, Peter (Committee member) / School of Mathematical and Natural Sciences (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
131520-Thumbnail Image.png
Description
A lab protocol was created in order to introduce arson evidence analysis to students. The procedures dictate a thorough introduction from evidence handling procedures to analysis of common accelerant mass spectrum. The objectives of the lab protocol included classifying and describing various pieces of arson evidence and common accelerants as

A lab protocol was created in order to introduce arson evidence analysis to students. The procedures dictate a thorough introduction from evidence handling procedures to analysis of common accelerant mass spectrum. The objectives of the lab protocol included classifying and describing various pieces of arson evidence and common accelerants as well as synthesizing information about accelerant composition to interpret GC-MS data output. This would allow the student to experience first-hand what the subsection of arson analysis has to offer in the field of forensic science which could help the student decide on more specialties to study later on. I was unable to run the lab protocol in a laboratory setting, therefore in the future I want to use the lab protocol and receive feedback in order to improve the protocol so the student is receiving the best possible learning outcomes. The experience of creating a lab protocol in forensic science gave myself a greater understanding of what goes on behind an academic learning procedure and more insight on arson evidence analysis.
Created2020-05
134153-Thumbnail Image.png
Description
Capsaicin and dihydrocapsaicin account for 90% of capsaicinoids when it comes to the pungency of peppers. Capsaicin stability was investigated through a cooking and storage parameter where three different tests were done; cooking duration, cooking temperature, and storage stability. The concentration of capsaicinoids was quantified through gas chromatography-mass spectrometry where

Capsaicin and dihydrocapsaicin account for 90% of capsaicinoids when it comes to the pungency of peppers. Capsaicin stability was investigated through a cooking and storage parameter where three different tests were done; cooking duration, cooking temperature, and storage stability. The concentration of capsaicinoids was quantified through gas chromatography-mass spectrometry where those values were then used to determine the total Scoville heat units (SHU). Furthermore, half-life was determined by finding the decay rate during cooking and storage. Results showed that there was an increase in degradation of capsaicinoids concentration when peppers were cooked for a long period of time. Degradation rate increases with increasing temperatures as would be expected by the Arrhenius equation. Hence, if a maximum pungency is wanted, it is best to cook the least time as possible or add the peppers towards the end of the culinary technique. This would help by cooking the peppers for a short period of time while not being exposed to the high temperature long enough before significant degradation occurs. Lastly, the storage stability results interpreted that a maximum potency of the peppers can be retained in a freezer or refrigerator opposed to an open room temperature environment or exposure from the sun. Furthermore, the stability of peppers has a long shelf life with even that the worse storage condition's half-life value was 113.5 months (9.5 years). Thus, peppers do not need to be bought frequently because its potency will last for several years.
ContributorsBustamante, Krista Gisselle (Author) / Cahill, Thomas (Thesis director) / Sweat, Ken (Committee member) / Armendariz Guajardo, Jose (Committee member) / School of Mathematical and Natural Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2017-12