Matching Items (203)
133654-Thumbnail Image.png
Description
Widespread knowledge of fracture mechanics is mostly based on previous models that generalize crack growth in materials over several loading cycles. The objective of this project is to characterize crack growth that occurs in titanium alloys, specifically Grade 5 Ti-6Al-4V, at the sub-cycle scale, or within a single loading cycle.

Widespread knowledge of fracture mechanics is mostly based on previous models that generalize crack growth in materials over several loading cycles. The objective of this project is to characterize crack growth that occurs in titanium alloys, specifically Grade 5 Ti-6Al-4V, at the sub-cycle scale, or within a single loading cycle. Using scanning electron microscopy (SEM), imaging analysis is performed to observe crack behavior at ten loading steps throughout the loading and unloading paths. Analysis involves measuring the incremental crack growth and crack tip opening displacement (CTOD) of specimens at loading ratios of 0.1, 0.3, and 0.5. This report defines the relationship between crack growth and the stress intensity factor, K, of the specimens, as well as the relationship between the R-ratio and stress opening level. The crack closure phenomena and effect of microcracks are discussed as they influence the crack growth behavior. This method has previously been used to characterize crack growth in Al 7075-T6. The results for Ti-6Al-4V are compared to these previous findings in order to strengthen conclusions about crack growth behavior.
ContributorsNazareno, Alyssa Noelle (Author) / Liu, Yongming (Thesis director) / Jiao, Yang (Committee member) / Mechanical and Aerospace Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
151815-Thumbnail Image.png
Description
The field of education has been immensely benefited by major breakthroughs in technology. The arrival of computers and the internet made student-teacher interaction from different parts of the world viable, increasing the reach of the educator to hitherto remote corners of the world. The arrival of mobile phones in the

The field of education has been immensely benefited by major breakthroughs in technology. The arrival of computers and the internet made student-teacher interaction from different parts of the world viable, increasing the reach of the educator to hitherto remote corners of the world. The arrival of mobile phones in the recent past has the potential to provide the next paradigm shift in the way education is conducted. It combines the universal reach and powerful visualization capabilities of the computer with intimacy and portability. Engineering education is a field which can exploit the benefits of mobile devices to enhance learning and spread essential technical know-how to different parts of the world. In this thesis, I present AJDSP, an Android application evolved from JDSP, providing an intuitive and a easy to use environment for signal processing education. AJDSP is a graphical programming laboratory for digital signal processing developed for the Android platform. It is designed to provide utility; both as a supplement to traditional classroom learning and as a tool for self-learning. The architecture of AJDSP is based on the Model-View-Controller paradigm optimized for the Android platform. The extensive set of function modules cover a wide range of basic signal processing areas such as convolution, fast Fourier transform, z transform and filter design. The simple and intuitive user interface inspired from iJDSP is designed to facilitate ease of navigation and to provide the user with an intimate learning environment. Rich visualizations necessary to understand mathematically intensive signal processing algorithms have been incorporated into the software. Interactive demonstrations boosting student understanding of concepts like convolution and the relation between different signal domains have also been developed. A set of detailed assessments to evaluate the application has been conducted for graduate and senior-level undergraduate students.
ContributorsRanganath, Suhas (Author) / Spanias, Andreas (Thesis advisor) / Tepedelenlioğlu, Cihan (Committee member) / Tsakalis, Konstantinos (Committee member) / Arizona State University (Publisher)
Created2013
171769-Thumbnail Image.png
Description
Electromigration, the net atomic diffusion associated with the momentum transfer from electrons moving through a material, is a major cause of device and component failure in microelectronics. The deleterious effects from electromigration rise with increased current density, a parameter that will only continue to increase as our electronic devices get

Electromigration, the net atomic diffusion associated with the momentum transfer from electrons moving through a material, is a major cause of device and component failure in microelectronics. The deleterious effects from electromigration rise with increased current density, a parameter that will only continue to increase as our electronic devices get smaller and more compact. Understanding the dynamic diffusional pathways and mechanisms of these electromigration-induced and propagated defects can further our attempts at mitigating these failure modes. This dissertation provides insight into the relationships between these defects and parameters of electric field strength, grain boundary misorientation, grain size, void size, eigenstrain, varied atomic mobilities, and microstructure.First, an existing phase-field model was modified to investigate the various defect modes associated with electromigration in an equiaxed non-columnar microstructure. Of specific interest was the effect of grain boundary misalignment with respect to current flow and the mechanisms responsible for the changes in defect kinetics. Grain size, magnitude of externally applied electric field, and the utilization of locally distinct atomic mobilities were other parameters investigated. Networks of randomly distributed grains, a common microstructure of interconnects, were simulated in both 2- and 3-dimensions displaying the effects of 3-D capillarity on diffusional dynamics. Also, a numerical model was developed to study the effect of electromigration on void migration and coalescence. Void migration rates were found to be slowed from compressive forces and the nature of the deformation concurrent with migration was examined through the lens of chemical potential. Void migration was also validated with previously reported theoretical explanations. Void coalescence and void budding were investigated and found to be dependent on the magnitude of interfacial energy and electric field strength. A grasp on the mechanistic pathways of electromigration-induced defect evolution is imperative to the development of reliable electronics, especially as electronic devices continue to miniaturize. This dissertation displays a working understanding of the mechanistic pathways interconnects can fail due to electromigration, as well as provide direction for future research and understanding.
ContributorsFarmer, William McHann (Author) / Ankit, Kumar (Thesis advisor) / Chawla, Nikhilesh (Committee member) / Jiao, Yang (Committee member) / McCue, Ian (Committee member) / Arizona State University (Publisher)
Created2022
168693-Thumbnail Image.png
Description
Localization tasks using two-way ranging (TWR) are making headway in modern daynavigation applications as an alternative to legacy global navigation satellite systems (GNSS) such as GPS. There is not currently literature that provides a closed-form expression for estimation performance bounds on position and attitude when a TWR system is employed. A Cramer-Rao Lower

Localization tasks using two-way ranging (TWR) are making headway in modern daynavigation applications as an alternative to legacy global navigation satellite systems (GNSS) such as GPS. There is not currently literature that provides a closed-form expression for estimation performance bounds on position and attitude when a TWR system is employed. A Cramer-Rao Lower Bounds (CRLB) is derived for position and orientation estimation using both 2-D and 3-D geometries. A literature review is performed to give background and detail on the tools needed for a thorough analysis of this problem. Popular Least Squares techniques and solutions to Wahba’s problem are compared to the derived bounds as proof of correctness using Monte Carlo simulations. A brief exploration on estimation performance using an Extended Kalman Filter for non-stationary users is also looked at as an introduction to future extensions to this work. The literature Applications like the CHP2 system are discussed as well to show how secure, inexpensive and robust implementation of TWR is highly feasible. i
ContributorsWelker, Samuel (Author) / Bliss, Daniel (Thesis advisor) / Herschfelt, Andrew (Committee member) / Tsakalis, Konstantinos (Committee member) / Arizona State University (Publisher)
Created2022
168698-Thumbnail Image.png
Description
Soft continuum robots with the ability to bend, twist, elongate, and shorten, similar to octopus arms, have many potential applications, such as dexterous manipulation and navigation through unstructured, dynamic environments. Novel soft materials such as smart hydrogels, which change volume and other properties in response to stimuli such as temperature,

Soft continuum robots with the ability to bend, twist, elongate, and shorten, similar to octopus arms, have many potential applications, such as dexterous manipulation and navigation through unstructured, dynamic environments. Novel soft materials such as smart hydrogels, which change volume and other properties in response to stimuli such as temperature, pH, and chemicals, can potentially be used to construct soft robots that achieve self-regulated adaptive reconfiguration through on-demand dynamic control of local properties. However, the design of controllers for soft continuum robots is challenging due to their high-dimensional configuration space and the complexity of modeling soft actuator dynamics. To address these challenges, this dissertation presents two different model-based control approaches for robots with distributed soft actuators and sensors and validates the approaches in simulations and physical experiments. It is demonstrated that by choosing an appropriate dynamical model and designing a decentralized controller based on this model, such robots can be controlled to achieve diverse types of complex configurations. The first approach consists of approximating the dynamics of the system, including its actuators, as a linear state-space model in order to apply optimal robust control techniques such as H∞ state-feedback and H∞ output-feedback methods. These techniques are designed to utilize the decentralized control structure of the robot and its distributed sensing and actuation to achieve vibration control and trajectory tracking. The approach is validated in simulation on an Euler-Bernoulli dynamic model of a hydrogel based cantilevered robotic arm and in experiments with a hydrogel-actuated miniature 2-DOF manipulator. The second approach is developed for soft continuum robots with dynamics that can be modeled using Cosserat rod theory. An inverse dynamics control approach is implemented on the Cosserat model of the robot for tracking configurations that include bending, torsion, shear, and extension deformations. The decentralized controller structure facilitates its implementation on robot arms composed of independently-controllable segments that have local sensing and actuation. This approach is validated on simulated 3D robot arms and on an actual silicone robot arm with distributed pneumatic actuation, for which the inverse dynamics problem is solved in simulation and the computed control outputs are applied to the robot in real-time.
ContributorsDoroudchi, Azadeh (Author) / Berman, Spring (Thesis advisor) / Tsakalis, Konstantinos (Committee member) / Si, Jennie (Committee member) / Marvi, Hamid (Committee member) / Arizona State University (Publisher)
Created2022
168684-Thumbnail Image.png
Description本文对中国制药企业并购溢价影响因素进行了研究,提出了对制药企业并购非常重要的两个新的影响因素:可生产药品批文和在研新药批文。本文以2011年1月—2019年12月间我国制药行业上市公司并购事件为样本,对在研新药和可生产药品批文的价值从四个维度度量:是否有在研新药和可生产药品批文;在研新药数量及可生产药品批文数量;根据创新药和仿制药两个类别进行细分;标的企业所拥有的在研新药和可生产药品批文的市场价值。论文发现药品批文对企业并购溢价的影响不是很显著。进一步的,本文探究了药品批文对主并企业的对被并购公司的估值的影响。实证结果表明,我国制药企业在并购估值时确实会考虑到在研新药和可生产药品批文的价值。本文还发现对于可生产药品来说,相对创新药,被并购公司持有的仿制药批文影响更显著。而对于在研新药来说,主并企业更看重在研的创新药,在研仿制药对并购估值的影响不大。最后,本文选取了两个代表性案例进一步分析和探讨药品批文对企业并购的影响。
ContributorsYe, Tao (Author) / Shen, Wei (Thesis advisor) / Chang, Chun (Thesis advisor) / Jiang, Zhan (Committee member) / Gu, Bin (Committee member) / Arizona State University (Publisher)
Created2022
168665-Thumbnail Image.png
Description
Disordered many-body systems are ubiquitous in condensed matter physics, materials science and biological systems. Examples include amorphous and glassy states of matter, granular materials, and tissues composed of packings of cells in the extra-cellular matrix (ECM). Understanding the collective emergent properties in these systems is crucial to improving the capability

Disordered many-body systems are ubiquitous in condensed matter physics, materials science and biological systems. Examples include amorphous and glassy states of matter, granular materials, and tissues composed of packings of cells in the extra-cellular matrix (ECM). Understanding the collective emergent properties in these systems is crucial to improving the capability for controlling, engineering and optimizing their behaviors, yet it is extremely challenging due to their complexity and disordered nature. The main theme of the thesis is to address this challenge by characterizing and understanding a variety of disordered many-body systems via unique statistical geometrical and topological tools and the state-of-the-art simulation methods. Two major topics of the thesis are modeling ECM-mediated multicellular dynamics and understanding hyperuniformity in 2D material systems. Collective migration is an important mode of cell movement for several biological processes, and it has been the focus of a large number of studies over the past decades. Hyperuniform (HU) state is a critical state in a many-particle system, an exotic property of condensed matter discovered recently. The main focus of this thesis is to study the mechanisms underlying collective cell migration behaviors by developing theoretical/phenomenological models that capture the features of ECM-mediated mechanical communications in vitro and investigate general conditions that can be imposed on hyperuniformity-preserving and hyperuniformity-generating operations, as well as to understand how various novel transport physical properties arise from the unique hyperuniform long-range correlations.
ContributorsZheng, Yu (Author) / Jiao, Yang (Thesis advisor) / Zhuang, Houlong (Committee member) / Beckstein, Oliver (Committee member) / Ros, Robert (Committee member) / Arizona State University (Publisher)
Created2022
168670-Thumbnail Image.png
Description汽车行业属于国家支柱型产业,创造了高额的产值,增加了就业岗位。随着汽车生产行业竞争日趋激烈的趋势影响,汽车经销商在未来会出现明显的分化,并且逐步向头部集中。基于这样的行业背景,本项研究开展汽车经销商整体经营和盈利能力等方面的详细深入分析,即系统整合汽车经销商业务运营层面和财务层面数据,结合统计研究方法,对经销商盈利能力进行系统且详实归因分析,从而试别驱动盈利能力的关键业务要素。其研究成果能够完善对行业发展规律和经营模式系统性理解,从而进一步指导该领域的相关业务实践,提高经销商整体经营业绩。本课题通过四个阶段来开展经销商整体经营与盈利归因的相关研究。首先,本课题梳理了中国汽车消费行业发展的历史,同时阐述样本期内(2018-2020年)国内宏观经济和汽车消费市场的特征进行,并介绍X品牌汽车经销商的地理分布、资质和业绩评级体系、自身经营特征以及汽车生产商对经销商扶持政策等方面。在第二阶段,本课题聚焦研究假设、模型与方法,通过对X品牌汽车经销商的业务结构和运营管理开展分析,并逐步识别影响经销商盈利的关键指标变量,并提出研究假设和相关模型(即时间序列模型和面板回归模型)。在第三阶段,本课题首先开展经销商相关信息整体性统计分析,获得关键业务指标在样本期内动态特征,并结合时间序列回归模型探讨各项业务指标对经销商整体盈利能力的影响程度。在第四阶段,本课题采用(个体)固定效应的面板回归模型来研究不同组别(控制)条件下经销商盈利能力的影响因素以及其盈利能力对这些因素的敏感程度,从而更深入和全面地揭示影响经销商盈利能力的潜在因素。 基于上述四阶段的研究结果,本研究进一步就提升经销商盈利能力展开讨论,并提出相应对策。本课题相关结论仅从X品牌汽车经销商经营和财务数据进行定性和定量分析获得,但衷心希望本研究的成果能够对汽车经销商改善经营业务方面能起到实践上的借鉴和指导意义。
ContributorsPan, Guangxiong (Author) / Shen, Wei (Thesis advisor) / Wu, Fei (Thesis advisor) / Zhu, Qigui (Committee member) / Arizona State University (Publisher)
Created2022
171980-Thumbnail Image.png
Description
The increasing availability of data and advances in computation have spurred the development of data-driven approaches for modeling complex dynamical systems. These approaches are based on the idea that the underlying structure of a complex system can be discovered from data using mathematical and computational techniques. They also show promise

The increasing availability of data and advances in computation have spurred the development of data-driven approaches for modeling complex dynamical systems. These approaches are based on the idea that the underlying structure of a complex system can be discovered from data using mathematical and computational techniques. They also show promise for addressing the challenges of modeling high-dimensional, nonlinear systems with limited data. In this research expository, the state of the art in data-driven approaches for modeling complex dynamical systems is surveyed in a systemic way. First the general formulation of data-driven modeling of dynamical systems is discussed. Then several representative methods in feature engineering and system identification/prediction are reviewed, including recent advances and key challenges.
ContributorsShi, Wenlong (Author) / Ren, Yi (Thesis advisor) / Hong, Qijun (Committee member) / Jiao, Yang (Committee member) / Yang, Yezhou (Committee member) / Arizona State University (Publisher)
Created2022
171473-Thumbnail Image.png
Description
Applications such as heat exchangers, surface-based cellular structures, rotating blades, and waveguides rely on thin metal walls as crucial constituent elements of the structure. The design freedom enabled by laser powder bed fusion has led to an interest in exploiting this technology to further the performance of these components, many

Applications such as heat exchangers, surface-based cellular structures, rotating blades, and waveguides rely on thin metal walls as crucial constituent elements of the structure. The design freedom enabled by laser powder bed fusion has led to an interest in exploiting this technology to further the performance of these components, many of which retain their as-built surface morphologies on account of their design complexity. However, there is limited understanding of how and why mechanical properties vary by wall thickness for specimens that are additively manufactured and maintain an as-printed surface finish. Critically, the contributions of microstructure and morphology to the mechanical behavior of thin wall laser powder bed fusion structures have yet to be systematically identified and decoupled. This work focuses on elucidating the room temperature quasi-static tensile and high cycle fatigue properties of as-printed, thin-wall Inconel 718 fabricated using laser powder bed fusion, with the aim of addressing this critical gap in the literature. Wall thicknesses studied range from 0.3 - 2.0 mm, and the effects of Hot Isostatic Pressing are also examined, with sheet metal specimens used as a baseline for comparison. Statistical analyses are conducted to identify the significance of the dependence of properties on wall thickness and Hot Isostatic Pressing, as well as to examine correlations of these properties to section area, porosity, and surface roughness. A thorough microstructural study is complemented with a first-of-its-kind study of surface morphology to decouple their contributions and identify underlying causes for observed changes in mechanical properties. This thesis finds that mechanical properties in the quasi-static and fatigue framework do not see appreciable declines until specimen thickness is under 0.75 mm in thickness. The added Hot Isostatic Pressing heat treatment effectively closed pores, recrystallized the grain structure, and provided a more homogenous microstructure that benefits the modulus, tensile strength, elongation, and fatigue performance at higher stresses. Stress heterogeneities, primarily caused by surface defects, negatively affected the thinner specimens disproportionately. Without the use of the Hot Isostatic Pressing, the grain structure remained much more refined and benefitted the yield strength and fatigue endurance limit.
ContributorsParadise, Paul David (Author) / Bhate, Dhruv (Thesis advisor) / Chawla, Nikhilesh (Committee member) / Azeredo, Bruno (Committee member) / Jiao, Yang (Committee member) / Arizona State University (Publisher)
Created2022