Matching Items (240)
171980-Thumbnail Image.png
Description
The increasing availability of data and advances in computation have spurred the development of data-driven approaches for modeling complex dynamical systems. These approaches are based on the idea that the underlying structure of a complex system can be discovered from data using mathematical and computational techniques. They also show promise

The increasing availability of data and advances in computation have spurred the development of data-driven approaches for modeling complex dynamical systems. These approaches are based on the idea that the underlying structure of a complex system can be discovered from data using mathematical and computational techniques. They also show promise for addressing the challenges of modeling high-dimensional, nonlinear systems with limited data. In this research expository, the state of the art in data-driven approaches for modeling complex dynamical systems is surveyed in a systemic way. First the general formulation of data-driven modeling of dynamical systems is discussed. Then several representative methods in feature engineering and system identification/prediction are reviewed, including recent advances and key challenges.
ContributorsShi, Wenlong (Author) / Ren, Yi (Thesis advisor) / Hong, Qijun (Committee member) / Jiao, Yang (Committee member) / Yang, Yezhou (Committee member) / Arizona State University (Publisher)
Created2022
171473-Thumbnail Image.png
Description
Applications such as heat exchangers, surface-based cellular structures, rotating blades, and waveguides rely on thin metal walls as crucial constituent elements of the structure. The design freedom enabled by laser powder bed fusion has led to an interest in exploiting this technology to further the performance of these components, many

Applications such as heat exchangers, surface-based cellular structures, rotating blades, and waveguides rely on thin metal walls as crucial constituent elements of the structure. The design freedom enabled by laser powder bed fusion has led to an interest in exploiting this technology to further the performance of these components, many of which retain their as-built surface morphologies on account of their design complexity. However, there is limited understanding of how and why mechanical properties vary by wall thickness for specimens that are additively manufactured and maintain an as-printed surface finish. Critically, the contributions of microstructure and morphology to the mechanical behavior of thin wall laser powder bed fusion structures have yet to be systematically identified and decoupled. This work focuses on elucidating the room temperature quasi-static tensile and high cycle fatigue properties of as-printed, thin-wall Inconel 718 fabricated using laser powder bed fusion, with the aim of addressing this critical gap in the literature. Wall thicknesses studied range from 0.3 - 2.0 mm, and the effects of Hot Isostatic Pressing are also examined, with sheet metal specimens used as a baseline for comparison. Statistical analyses are conducted to identify the significance of the dependence of properties on wall thickness and Hot Isostatic Pressing, as well as to examine correlations of these properties to section area, porosity, and surface roughness. A thorough microstructural study is complemented with a first-of-its-kind study of surface morphology to decouple their contributions and identify underlying causes for observed changes in mechanical properties. This thesis finds that mechanical properties in the quasi-static and fatigue framework do not see appreciable declines until specimen thickness is under 0.75 mm in thickness. The added Hot Isostatic Pressing heat treatment effectively closed pores, recrystallized the grain structure, and provided a more homogenous microstructure that benefits the modulus, tensile strength, elongation, and fatigue performance at higher stresses. Stress heterogeneities, primarily caused by surface defects, negatively affected the thinner specimens disproportionately. Without the use of the Hot Isostatic Pressing, the grain structure remained much more refined and benefitted the yield strength and fatigue endurance limit.
ContributorsParadise, Paul David (Author) / Bhate, Dhruv (Thesis advisor) / Chawla, Nikhilesh (Committee member) / Azeredo, Bruno (Committee member) / Jiao, Yang (Committee member) / Arizona State University (Publisher)
Created2022
189211-Thumbnail Image.png
Description
This is a two-part thesis.Part-I: This work investigated the long-term reliability of a statistically significant number of two different commercial module-level power electronics (MLPE) devices using two input power profiles at high temperatures to estimate their reliability and service life in field-use conditions. Microinverters underwent a period of 15,000 accelerated stress

This is a two-part thesis.Part-I: This work investigated the long-term reliability of a statistically significant number of two different commercial module-level power electronics (MLPE) devices using two input power profiles at high temperatures to estimate their reliability and service life in field-use conditions. Microinverters underwent a period of 15,000 accelerated stress hours, whereas the power optimizers underwent a period of 6,400 accelerated stress hours. None of the MLPE devices failed during the accelerated test; however, the optimizers degraded by about 1% in output efficiency. Based on their accelerated stress temperatures, the estimated field equivalent service life approximated using the Arrhenius model ranges between 24-48 years for microinverters and 39-73 years for optimizers, with a reliability of 74% and a lower one-sided confidence level of 95%. Furthermore, using the Weibull distribution model, the reliability and service lifetimes of MLPE devices are statistically analyzed. MLPE lifetimes estimated using Weibull slope and shape parameters with a 95% lower one-sided confidence level indicate a similar, or possibly exceeding, the 25-year lifetime of the associated photovoltaic (PV) modules. Part–II:This study investigated the impact of the hotspot stress test on glass-backsheet and glass-glass modules. Before the hotspot testing, both modules were pre-stressed using 600 thermal cycles (TC600) to represent decades of field-exposed modules experiencing hotspot effects in field-use conditions. The glass-glass module reached a hotspot temperature of nearly 200°C, whereas the glass-backsheet module's maximum hotspot temperature was almost 150°C. After the hotspot experiment, electroluminescence imaging showed that most of the cells in the glass-glass module appeared to have experienced significant damage. In contrast, the stressed cells in the glass-backsheet module appeared to have experienced insignificant damage. After the sequential stress testing (hotspot testing after TC600), the glass-glass module degraded by nearly 8.3% in maximum power, whereas the glass-backsheet module experienced 1.3% degradation. This study also incorporated hotspot endurance in fresh (without being subjected to prior TC600) glass-glass and glass-backsheet modules. The test outcome demonstrated that both module types exhibited marginal maximum power loss.
ContributorsAfridi, Muhammad Zain Ul Abideen (Author) / Tamizhmani, Govindasamy (Thesis advisor) / Kiaei, Sayfe (Thesis advisor) / Bakkaloglu, Bertan (Committee member) / Flicker, Jack (Committee member) / Arizona State University (Publisher)
Created2023
187597-Thumbnail Image.png
Description
A photovoltaic (PV) module is a series and parallel connection of multiple PV cells; defects in any cell can cause module power to drop. Similarly, a photovoltaic system is a series and parallel connection of multiple modules, and any low-performing module in the PV system can decrease the system output

A photovoltaic (PV) module is a series and parallel connection of multiple PV cells; defects in any cell can cause module power to drop. Similarly, a photovoltaic system is a series and parallel connection of multiple modules, and any low-performing module in the PV system can decrease the system output power. Defects in a solar cell include, but not limited to, the presence of cracks, potential induced degradation (PID), delamination, corrosion, and solder bond degradation. State-of-the-art characterization techniques to identify the defective cells in a module and defective module in a string are i) Current-voltage (IV) curve tracing, ii) Electroluminescence (EL) imaging, and iii) Infrared (IR) imaging. Shortcomings of these techniques include i) unsafe connection and disconnection need to be made with high voltage electrical cables, and ii) labor and time intensive disconnection of the photovoltaic strings from the system.This work presents a non-contact characterization technique to address the above two shortcomings. This technique uses a non-contact electrostatic voltmeter (ESV) along with a probe sensor to measure the surface potential of individual solar cells in a commercial module and the modules in a string in both off-grid and grid-connected systems. Unlike the EL approach, the ESV setup directly measures the surface potential by sensing the electric field lines that are present on the surface of the solar cell. The off-grid testing of ESV on individual cells and multicells in crystalline silicon (c-Si) modules and on individual cells in cadmium telluride (CdTe) modules and individual modules in a CdTe string showed less than 2% difference in open circuit voltage compared to the voltmeter values. In addition, surface potential mapping of the defective cracked cells in a multicell module using ESV identified the dark, grey, and bright areas of EL images precisely at the exact locations shown by the EL characterization. The on-grid testing of ESV measured the individual module voltages at maximum power point (Vmpp) and quantitatively identified the exact PID-affected module in the entire system. In addition, the poor-performing non-PID modules of a grid-connected PV system were also identified using the ESV technique.
ContributorsRaza, Hamza Ahmad (Author) / Tamizhmani, Govindasamy (Thesis advisor) / Kiaei, Sayfe (Committee member) / Bakkaloglu, Bertan (Committee member) / Hacke, Peter (Committee member) / Arizona State University (Publisher)
Created2023
171718-Thumbnail Image.png
Description
Fatigue fracture is one of the most common types of mechanical failures seen in structures. Considering that fatigue failures usually initiate on surfaces, it is accepted that surface roughness has a detrimental effect on the fatigue life of components. Irregularities on the surface cause stress concentrations and form nucleation sites

Fatigue fracture is one of the most common types of mechanical failures seen in structures. Considering that fatigue failures usually initiate on surfaces, it is accepted that surface roughness has a detrimental effect on the fatigue life of components. Irregularities on the surface cause stress concentrations and form nucleation sites for cracks. As surface conditions are not always satisfactory, particularly for additively manufactured components, it is necessary to develop a reliable model for fatigue life estimation considering surface roughness effects and assure structural integrity. This research study focuses on extending a previously developed subcycle fatigue crack growth model to include the effects of surface roughness. Unlike other models that consider surface irregularities as series of cracks, the proposed model is unique in the way that it treats the peaks and valleys of surface texture as a single equivalent notch. First, an equivalent stress concentration factor for the roughness was estimated and introduced into an asymptotic interpolation method for notches. Later, a concept called equivalent initial flaw size was incorporated along with linear elastic fracture mechanics to predict the fatigue life of Ti-6Al-4V alloy with different levels of roughness under uniaxial and multiaxial loading conditions. The predicted results were validated using the available literature data. The developed model can also handle variable amplitude loading conditions, which is suggested for future work.
ContributorsKethamukkala, Kaushik (Author) / Liu, Yongming (Thesis advisor) / Jiao, Yang (Committee member) / Nian, Qiong (Committee member) / Arizona State University (Publisher)
Created2022
171937-Thumbnail Image.png
Description
Microstructure refinement and alloy additions are considered potential routes to increase high temperature performance of existing metallic superalloys used under extreme conditions. Nanocrystalline (NC) Cu-10at%Ta exhibits such improvements over microstructurally unstable NC metals, leading to enhanced creep behavior compared to its coarse-grained (CG) counterparts. However, the low melting point of

Microstructure refinement and alloy additions are considered potential routes to increase high temperature performance of existing metallic superalloys used under extreme conditions. Nanocrystalline (NC) Cu-10at%Ta exhibits such improvements over microstructurally unstable NC metals, leading to enhanced creep behavior compared to its coarse-grained (CG) counterparts. However, the low melting point of Cu compared to other FCC metals, e.g., Ni, might lead to an early onset of diffusional creep mechanisms. Thus, this research seeks to study the thermo-mechanical behavior and stability of hierarchical (prepared using arc-melting) and NC (prepared by collaborators through powder pressing and annealing) Ni-Y-Zr alloys where Zr is expected to provide solid solution and grain boundary strengthening in hierarchical and NC alloys, respectively, while Ni-Y and Ni-Zr intermetallic precipitates (IMCs) would provide kinetic stability. Hierarchical alloys had microstructures stable up to 1100 °C with ultrafine eutectic of ~300 nm, dendritic arm spacing of ~10 μm, and grain size ~1-2 mm. Room temperature hardness tests along with uniaxial compression performed at 25 and 600 °C revealed that microhardness and yield strength of hierarchical alloys with small amounts of Y (0.5-1wt%) and Zr (1.5-3 wt%) were comparable to Ni-superalloys, due to the hierarchical microstructure and potential presence of nanoscale IMCs. In contrast, NC alloys of the same composition were found to be twice as hard as the hierarchical alloys. Creep tests at 0.5 homologous temperature showed active Coble creep mechanisms in hierarchical alloys at low stresses with creep rates slower than Fe-based superalloys and dislocation creep mechanisms at higher stresses. Creep in NC alloys at lower stresses was only 20 times faster than hierarchical alloys, with the difference in grain size ranging from 10^3 to 10^6 times at the same temperature. These NC alloys showed enhanced creep properties over other NC metals and are expected to have rates equal to or improved over the CG hierarchical alloys with ECAP processing techniques. Lastly, the in-situ wide-angle x-ray scattering (WAXS) measurements during quasi-static and creep tests implied stresses being carried mostly by the matrix before yielding and in the primary creep stage, respectively, while relaxation was observed in Ni5Zr for both hierarchical and NC alloys. Beyond yielding and in the secondary creep stage, lattice strains reached a steady state, thereby, an equilibrium between plastic strain rates was achieved across different phases, so that deformation reaches a saturation state where strain hardening effects are compensated by recovery mechanisms.
ContributorsSharma, Shruti (Author) / Peralta, Pedro (Thesis advisor) / Alford, Terry (Committee member) / Jiao, Yang (Committee member) / Solanki, Kiran (Committee member) / Arizona State University (Publisher)
Created2022
171814-Thumbnail Image.png
Description
Intelligent engineering designs require an accurate understanding of material behavior, since any uncertainties or gaps in knowledge must be counterbalanced with heightened factors of safety, leading to overdesign. Therefore, building better structures and pushing the performance of new components requires an improved understanding of the thermomechanical response of advanced materials

Intelligent engineering designs require an accurate understanding of material behavior, since any uncertainties or gaps in knowledge must be counterbalanced with heightened factors of safety, leading to overdesign. Therefore, building better structures and pushing the performance of new components requires an improved understanding of the thermomechanical response of advanced materials under service conditions. This dissertation provides fundamental investigations of several advanced materials: thermoset polymers, a common matrix material for fiber-reinforced composites and nanocomposites; aluminum alloy 7075-T6 (AA7075-T6), a high-performance aerospace material; and ceramic matrix composites (CMCs), an advanced composite for extreme-temperature applications. To understand matrix interactions with various interfaces and nanoinclusions at their fundamental scale, the properties of thermoset polymers are studied at the atomistic scale. An improved proximity-based molecular dynamics (MD) technique for modeling the crosslinking of thermoset polymers is carefully established, enabling realistic curing simulations through its ability to dynamically and probabilistically perform complex topology transformations. The proximity-based MD curing methodology is then used to explore damage initiation and the local anisotropic evolution of mechanical properties in thermoset polymers under uniaxial tension with an emphasis on changes in stiffness through a series of tensile loading, unloading, and reloading experiments. Aluminum alloys in aerospace applications often require a fatigue life of over 109 cycles, which is well over the number of cycles that can be practically tested using conventional fatigue testing equipment. In order to study these high-life regimes, a detailed ultrasonic cycle fatigue study is presented for AA7075-T6 under fully reversed tension-compression loading. The geometric sensitivity, frequency effects, size effects, surface roughness effects, and the corresponding failure mechanisms for ultrasonic fatigue across different fatigue regimes are investigated. Finally, because CMCs are utilized in extreme environments, oxidation plays an important role in their degradation. A multiphysics modeling methodology is thus developed to address the complex coupling between oxidation, mechanical stress, and oxygen diffusion in heterogeneous carbon fiber-reinforced CMC microstructures.
ContributorsSchichtel, Jacob (Author) / Chattopadhyay, Aditi (Thesis advisor) / Dai, Lenore (Committee member) / Ghoshal, Anindya (Committee member) / Huang, Huei-Ping (Committee member) / Jiao, Yang (Committee member) / Oswald, Jay (Committee member) / Arizona State University (Publisher)
Created2022
171399-Thumbnail Image.png
Description
With the abundance of increasingly large datasets, the ability to predict the phase of high-entropy alloys (HEAs) based solely on elemental composition could become a reliable tool for the discovery of new HEAs. However, as the amount of data expands so does the computational time and resources required to train

With the abundance of increasingly large datasets, the ability to predict the phase of high-entropy alloys (HEAs) based solely on elemental composition could become a reliable tool for the discovery of new HEAs. However, as the amount of data expands so does the computational time and resources required to train predictive classical machine learning models. Quantum computers, which use quantum bits (qubits), could be the solution to overcoming these demands. Their ability to use quantum superposition and interference to perform calculations could be the key to handling large amounts of data. In this work, a hybrid quantum-classical machine learning algorithm is implemented on both quantum simulators and quantum processors to perform the supervised machine learning task. Their feasibility as a future tool for HEA discovery is evaluated based on the algorithm’s performance. An artificial neural network (ANN), run by classical computers, is also trained on the same data for performance comparison. The accuracy of the quantum-classical model was found to be comparable to the accuracy achieved by the classical ANN with a slight decrease in accuracy when ran on quantum hardware due to qubit susceptibility to decoherence. Future developments in the applied quantum machine learning method are discussed.
ContributorsBrown, Payden Lance (Author) / Zhuang, Houlong (Thesis advisor) / Ankit, Kumar (Committee member) / Jiao, Yang (Committee member) / Arizona State University (Publisher)
Created2022
Description

Computational materials is a field that utilizes modeling, simulations, and technology to study how materials behave. This honors thesis is a presentation discussing computational materials, our study of packing theory using the Monte Carlo (MC), and how our research can be related to real materials we use.

ContributorsVidallon, Justine Ilyssa (Author) / Jiao, Yang (Thesis director) / Zhuang, Houlong (Committee member) / Barrett, The Honors College (Contributor) / Materials Science and Engineering Program (Contributor)
Created2023-05
168458-Thumbnail Image.png
Description
Cellular metamaterials arouse broad scientific interests due to the combination of host material and structure together to achieve a wide range of physical properties rarely found in nature. Stochastic foam as one subset has been considered as a competitive candidate for versatile applications including heat exchangers, battery electrodes, automotive, catalyst

Cellular metamaterials arouse broad scientific interests due to the combination of host material and structure together to achieve a wide range of physical properties rarely found in nature. Stochastic foam as one subset has been considered as a competitive candidate for versatile applications including heat exchangers, battery electrodes, automotive, catalyst devices, magnetic shielding, etc. For the engineering of the cellular foam architectures, closed-form models that can be used to predict the mechanical and thermal properties of foams are highly desired especially for the recently developed ultralight weight shellular architectures. Herein, for the first time, a novel packing three-dimensional (3D) hollow pentagonal dodecahedron (HPD) model is proposed to simulate the cellular architecture with hollow struts. An electrochemical deposition process is utilized to manufacture the metallic hollow foam architecture. Mechanical and thermal testing of the as-manufactured foams are carried out to compare with the HPD model. Timoshenko beam theory is utilized to verify and explain the derived power coefficient relation. Our HPD model is proved to accurately capture both the topology and the physical properties of hollow stochastic foam. Understanding how the novel HPD model packing helps break the conventional impression that 3D pentagonal topology cannot fulfill the space as a representative volume element. Moreover, the developed HPD model can predict the mechanical and thermal properties of the manufactured hollow metallic foams and elucidating of how the inevitable manufacturing defects affect the physical properties of the hollow metallic foams. Despite of the macro-scale stochastic foam architecture, nano gradient gyroid lattices are studied using Molecular Dynamics (MD) simulation. The simulation result reveals that, unlike homogeneous architecture, gradient gyroid not only shows novel layer-by-layer deformation behavior, but also processes significantly better energy absorption ability. The deformation behavior and energy absorption are predictable and designable, which demonstrate its highly programmable potential.
ContributorsDai, Rui (Author) / Nian, Qiong (Thesis advisor) / Jiao, Yang (Committee member) / Kwon, Beomjin (Committee member) / Liu, Yongming (Committee member) / Phelan, Patrick (Committee member) / Arizona State University (Publisher)
Created2021