Matching Items (119)
Filtering by

Clear all filters

171557-Thumbnail Image.png
Description
This dissertation consists of three chapters that investigate the rapid adoption and complex implementation of city commitments to transition to 100% renewable energy (100RE). The first paper uses a two-stage, mixed methods approach to examine 100RE commitments across the US, combining a multivariate regression of demographic, institutional, and policy factors

This dissertation consists of three chapters that investigate the rapid adoption and complex implementation of city commitments to transition to 100% renewable energy (100RE). The first paper uses a two-stage, mixed methods approach to examine 100RE commitments across the US, combining a multivariate regression of demographic, institutional, and policy factors in adoption and six interview-based state case studies to discuss implementation. Adoption of this non-binding commitment progressed rapidly for city councils around the US. Results show that many cities passed 100RE commitments with no implementation plan and minimal understanding of implementation challenges. This analysis highlights that many cities will need new institutions and administrative capacities for successful implementation of these ambitious new policies. While many cities abandoned the commitment soon after adoption, collaboration allowed cities in a few states to break through and pursue implementation, examined further in the next two studies. The second paper is a qualitative case study examining policymaking for the Utah Community Renewable Energy Act. Process tracing methods are used to identify causal factors in enacting this legislation at the state level and complementary resolutions at the local level. This Act was passed through the leadership and financial backing of major cities and committed the investor-owned utility to fulfill any city 100RE resolutions passed through 2019. Finally, the third paper is a mixed-methods, descriptive case study of the benefits of Community Choice Aggregation (CCA) in California, which many cities are using to fulfill their 100RE commitments. Cities have adopted CCAs to increase their local voice in the energy process, while fulfilling climate and energy goals. Overall, this research shows that change in the investor-owned utility electricity system is in fact possible from the city scale, though many cities will need institutional innovation to implement these policies and achieve the change they desire. While cities with greater resources are better positioned to make an impact, smaller cities can collaborate to similarly influence the energy system. Communities are interested in lowering energy costs for customers where possible, but the central motivations in these cases were the pursuit of sustainability and increasing local voice in energy decision-making.
ContributorsKunkel, Leah Christine (Author) / Breetz, Hanna L (Thesis advisor) / Parker, Nathan (Committee member) / Salon, Deborah (Committee member) / Arizona State University (Publisher)
Created2022
190931-Thumbnail Image.png
Description
In the last few decades, extensive research efforts have been focused on scaling down silicon-based complementary metal-oxide semiconductor (CMOS) technology to enable the continuation of Moore’s law. State-of-art CMOS includes fully depleted silicon-on-insulator (FDSOI) field-effect-transistors (FETs) with ultra-thin silicon channels (6 nm), as well as other three-dimensional (3D) device architectures

In the last few decades, extensive research efforts have been focused on scaling down silicon-based complementary metal-oxide semiconductor (CMOS) technology to enable the continuation of Moore’s law. State-of-art CMOS includes fully depleted silicon-on-insulator (FDSOI) field-effect-transistors (FETs) with ultra-thin silicon channels (6 nm), as well as other three-dimensional (3D) device architectures like Fin-FETs, nanosheet FETs, etc. Significant research efforts have characterized these technologies towards various applications, and at different conditions including a wide range of temperatures from room temperature (300 K) down to cryogenic temperatures. Theoretical efforts have studied ultrascaled devices using Landauer theory to further understand their transport properties and predict their performance in the quasi-ballistic regime.Further scaling of CMOS devices requires the introduction of new semiconducting channel materials, as now established by the research community. Here, two-dimensional (2D) semiconductors have emerged as a promising candidate to replace silicon for next-generation ultrascaled CMOS devices. These emerging 2D semiconductors also have applications beyond CMOS, for example in novel memory, neuromorphic, and spintronic devices. Graphene is a promising candidate for spintronic devices due to its outstanding spin transport properties as evidenced by numerous studies in non-local lateral spin valve (LSV) geometries. The essential components of graphene-based LSV, such as graphene FETs, metal-graphene contacts, and tunneling barriers, were individually investigated as part of this doctoral dissertation. In this work, several contributions were made to these CMOS and beyond CMOS technologies. This includes comprehensive characterization and modeling of FDSOI nanoscale FETs from room temperature down to cryogenic temperatures. Using Landauer theory for nanoscale transistors, FDSOI devices were analyzed and modeled under quasi-ballistic operation. This was extended towards a virtual-source modeling approach that accounts for temperature-dependent quasi-ballistic transport and back-gate biasing effects. Additionally, graphene devices with ultrathin high-k gate dielectrics were investigated towards FETs, non-volatile memory, and spintronic devices. New contributions were made relating to charge trapping effects and their impact on graphene device electrostatics (Dirac voltage shifts) and transport properties (impact on mobility and conductivity). This work also studied contact resistance and tunneling effects using transfer length method (TLM) graphene FET structures and magnetic tunneling junction (MTJ) towards graphene-based LSV.
ContributorsZhou, Guantong (Author) / Sanchez Esqueda, Ivan (Thesis advisor) / Vasileska, Dragica (Committee member) / Tongay, Sefaattin (Committee member) / Thornton, Trevor (Committee member) / Arizona State University (Publisher)
Created2023
190897-Thumbnail Image.png
Description
The research of alternative materials and new device architectures to exceed the limits of conventional silicon-based devices has been sparked by the persistent pursuit of semiconductor technology scaling. The development of tungsten diselenide (WSe2) and molybdenum disulfide (MoS2), well-known member of the transition metal dichalcogenide (TMD) family, has made great

The research of alternative materials and new device architectures to exceed the limits of conventional silicon-based devices has been sparked by the persistent pursuit of semiconductor technology scaling. The development of tungsten diselenide (WSe2) and molybdenum disulfide (MoS2), well-known member of the transition metal dichalcogenide (TMD) family, has made great strides towards ultrascaled two-dimensional (2D) field-effect-transistors (FETs). The scaling issues facing silicon-based complementary metal-oxide-semiconductor (CMOS) technologies can be solved by 2D FETs, which show extraordinary potential.This dissertation provides a comprehensive experimental analysis relating to improvements in p-type metal-oxide-semiconductor (PMOS) FETs with few-layer WSe2 and high-κ metal gate (HKMG) stacks. Compared to this works improved methods, standard metallization (more damaging to underlying channel) results in significant Fermi-level pinning, although Schottky barrier heights remain small (< 100 meV) when using high work function metals. Temperature-dependent analysis reveals a dominant contribution to contact resistance from the damaged channel access region. Thus, through less damaging metallization methods combined with strongly scaled HKMG stacks significant improvements were achieved in contact resistance and PMOS FET overall performance. A clean contact/channel interface was achieved through high-vacuum evaporation and temperature-controlled stepped deposition. Theoretical analysis using a Landauer transport adapted to WSe2 Schottky barrier FETs (SB-FETs) elucidates the prospects of nanoscale 2D PMOS FETs indicating high-performance towards the ultimate CMOS scaling limit. Next, this dissertation discusses how device electrical characteristics are affected by scaling of equivalent oxide thickness (EOT) and by adopting double-gate FET architectures, as well as how this might support CMOS scaling. An improved gate control over the channel is made possible by scaling EOT, improving on-off current ratios, carrier mobility, and subthreshold swing. This study also elucidates the impact of EOT scaling on FET gate hysteresis attributed to charge-trapping effects in high-κ-dielectrics prepared by atomic layer deposition (ALD). These developments in 2D FETs offer a compelling alternative to conventional silicon-based devices and a path for continued transistor scaling. This research contributes to ongoing efforts in 2D materials for future semiconductor technologies. Finally, this work introduces devices based on emerging Janus TMDs and bismuth oxyselenide (Bi2O2Se) layered semiconductors.
ContributorsPatoary, Md Naim Hossain (Author) / Sanchez Esqueda, Ivan (Thesis advisor) / Tongay, Sefaattin (Committee member) / Vasileska, Dragica (Committee member) / Goodnick, Stephen (Committee member) / Arizona State University (Publisher)
Created2023
189339-Thumbnail Image.png
Description
With rapid advances in technology development and public adoption, it is crucial to understand how these services will shape the future of travel depending on the extent to which people will use these services; impact the transportation and infrastructure systems such as changes in the use of transit and active

With rapid advances in technology development and public adoption, it is crucial to understand how these services will shape the future of travel depending on the extent to which people will use these services; impact the transportation and infrastructure systems such as changes in the use of transit and active modes of travel; and influence how technology developers create and update these transportation technologies to better serve people’s mobility needs. This dissertation explores how two major emerging services, namely ridehailing services and autonomous vehicles (AVs), will be used in the future when they are widely available and vastly used, and how they may impact the transportation infrastructure and societal travel patterns. The four proposed chapters use comprehensive quantitative and qualitative methods to explore the status of these technologies from theory, through robust modeling frameworks, to practice, by investigating the recent AV pilot deployments in real-world settings. In the second chapter, it was found that increased frequency of ridehailing use is significantly associated with a decrease in bus usage, suggesting that ridehailing functions more as a substitute for buses than as a complement and implying that transit agencies should explore ways to incorporate ridehailing services in their plans to enhance transit usage. Next, the third chapter showed that interest in using AVs for running errands had a positive and significant effect on AV ownership intent, even after accounting for a host of variables. The fourth chapter depicted how ridehailing experiences have a considerable effect on the willingness to ride AV-based services in both private and shared modes, suggesting that experience is crucial for future adoption of these services. Then, two recent real-world AV experiences are explored in the fifth chapter. Lessons learned from these experiments reinforced the importance of first-hand experiences in promoting AV awareness and trustworthiness, potentially leading to greater degrees of adoption. Finally, the results and discussions presented in this dissertation strengthen the body of literature on key emerging transportation technologies and inform policymakers and stakeholders to properly prepare cities and the public to welcome these technologies into our transportation system in an efficient, equitable, and complementary way.
ContributorsMagassy, Tassio Bezerra (Author) / Pendyala, Ram M (Thesis advisor) / Khoeini, Sara (Committee member) / Polzin, Steven E (Committee member) / Salon, Deborah (Committee member) / Arizona State University (Publisher)
Created2023
189347-Thumbnail Image.png
Description
Doping is the cornerstone of Semiconductor technology, enabling the functionalities of modern digital electronics. Two-dimensional (2D) transition metal dichalcogenides (TMDCs) have tunable direct bandgaps, strong many-body interactions, and promising applications in future quantum information sciences, optoelectronic, spintronic, and valleytronic devices. However, their wafer-scale synthesis and precisely controllable doping are challenging.

Doping is the cornerstone of Semiconductor technology, enabling the functionalities of modern digital electronics. Two-dimensional (2D) transition metal dichalcogenides (TMDCs) have tunable direct bandgaps, strong many-body interactions, and promising applications in future quantum information sciences, optoelectronic, spintronic, and valleytronic devices. However, their wafer-scale synthesis and precisely controllable doping are challenging. Moreover, there is no fixed framework to identify the doping concentration, which impedes their process integration for future commercialization. This work utilizes the Neutron Transmutation Doping technique to control the doping uniformly and precisely in TMDCs. Rhenium and Tin dopants are introduced in Tungsten- and Indium-based Chalcogenides, respectively. Fine-tuning over 0.001% doping level is achieved. Precise analytical techniques such as Gamma spectroscopy and Secondary Ion Mass Spectrometry are used to quantify ultra-low doping levels ranging from 0.005-0.01% with minimal error. Dopants in 2D TMDCs often exhibit a broad stokes-shifted emission, with high linewidths, due to extrinsic effects such as substrate disorder and surface adsorbates. A well-defined bound exciton emission induced by Rhenium dopants in monolayer WSe2 and WS2 at liquid nitrogen temperatures is reported along with specific annealing regimes to minimize the defects induced in the Neutron Transmutation process. This work demonstrates a framework for Neutron Doping in 2D materials, which can be a scalable process for controlling doping and doping-induced effects in 2D materials.
ContributorsLakhavade, Sushant Sambhaji (Author) / Tongay, Sefaattin (Thesis advisor) / Alford, Terry (Committee member) / Yang, Sui (Committee member) / Arizona State University (Publisher)
Created2023
189603-Thumbnail Image.png
Description

Recently the domestic aviation industry has been influenced by rapidly growing ultra low-cost carriers (ULCCs). The pattern of airport markets served by ULCCs is incongruous with legacy carriers and low-cost airlines alike. Existing literature, however, is limited for North American ULCCs: research has only recently begun to identify them separately

Recently the domestic aviation industry has been influenced by rapidly growing ultra low-cost carriers (ULCCs). The pattern of airport markets served by ULCCs is incongruous with legacy carriers and low-cost airlines alike. Existing literature, however, is limited for North American ULCCs: research has only recently begun to identify them separately from mainstream low-cost carriers. This study sought to understand the market factors that influence ULCC service decisions. The relationship between ULCC operations and airport market factors was analyzed using three methods: mapping 2019 flight data for four ULCCs combined, two regression analyses to evaluate variables, and three case studies examining distinct scenarios through interviews with airport managers. Enplanement data were assembled for every domestic airport offering scheduled service in 2019. Independent variables were collected for each Part 139 airport. The first model estimated an ordinary least squares regression model to analyze ULCC enplanements. The second model estimated a binary logistic equation for presence of ULCC service. Case studies for Bellingham, Waco, and Lincoln were selected using compelling airport factors and relevant ULCC experience. Maps of ULCC enplanements revealed concentrations of operations on the East Coast. Both regression analyses showed strong relationships between population and non-ULCC enplanements (two measures of airport market size) and ULCC operations. A significant relationship also existed between tourism and enplanements. In the logit model, distance and competition variables were associated with ULCC presence. Case studies emphasized the importance of airport fees and competition in ULCC preferences, although aeronautical costs were generally not significant in the regressions.

ContributorsTaplin, Drew (Author) / Kuby, Michael (Author) / Salon, Deborah (Author) / King, David A. (Author)
Created2023-01-31
171943-Thumbnail Image.png
Description
In the past decade, 2D materials especially transition metal dichalcogenides (TMDc), have been studied extensively for their remarkable optical and electrical properties arising from their reduced dimensionality. A new class of materials developed based on 2D TMDc that has gained great interest in recent years is Janus crystals. In contrast

In the past decade, 2D materials especially transition metal dichalcogenides (TMDc), have been studied extensively for their remarkable optical and electrical properties arising from their reduced dimensionality. A new class of materials developed based on 2D TMDc that has gained great interest in recent years is Janus crystals. In contrast to TMDc, Janus monolayer consists of two different chalcogen atomic layers between which the transition metal layer is sandwiched. This structural asymmetry causes strain buildup or a vertically oriented electric field to form within the monolayer. The presence of strain brings questions about the materials' synthesis approach, particularly when strain begins to accumulate and whether it causes defects within monolayers.The initial research demonstrated that Janus materials could be synthesized at high temperatures inside a chemical vapor deposition (CVD) furnace. Recently, a new method (selective epitaxy atomic replacement - SEAR) for plasma-based room temperature Janus crystal synthesis was proposed. In this method etching and replacing top layer chalcogen atoms of the TMDc monolayer happens with reactive hydrogen and sulfur radicals. Based on Raman and photoluminescence studies, the SEAR method produces high-quality Janus materials. Another method used to create Janus materials was the pulsed laser deposition (PLD) technique, which utilizes the interaction of sulfur/selenium plume with monolayer to replace the top chalcogen atomic layer in a single step. The goal of this analysis is to characterize microscale defects that appear in 2D Janus materials after they are synthesized using SEAR and PLD techniques. Various microscopic techniques were used for this purpose, as well as to understand the mechanism of defect formation. The main mechanism of defect formation was proposed to be strain release phenomena. Furthermore, different chalcogen atom positions within the monolayer result in different types of defects, such as the appearance of cracks or wrinkles across monolayers. In addition to investigating sample topography, Kelvin probe force microscopy (KPFM) was used to examine its electrical properties to see if the formation of defects impacts work function. Further study directions have been suggested for identifying and characterizing defects and their formation mechanism in the Janus crystals to understand their fundamental properties.
ContributorsSinha, Shantanu (Author) / Tongay, Sefaattin (Thesis advisor) / Alford, Terry (Committee member) / Yang, Sui (Committee member) / Arizona State University (Publisher)
Created2022
171612-Thumbnail Image.png
Description
Public transportation is considered a solution to congestion and a tool for reducing greenhouse gas emissions. It is becoming popular even in cities with the harshest climate conditions as these cities grow rapidly and are trying to provide sustainable alternatives for their vehicle-oriented communities. A lot must be taken into

Public transportation is considered a solution to congestion and a tool for reducing greenhouse gas emissions. It is becoming popular even in cities with the harshest climate conditions as these cities grow rapidly and are trying to provide sustainable alternatives for their vehicle-oriented communities. A lot must be taken into consideration whendesigning transit systems to reduce riders' vulnerability to heat in cities with high temperatures averaging 40°C during the summer and humidity levels reaching 90 percent. Using transit systems in Dubai, United Arab Emirates, and Phoenix Metropolitan, United States, as case studies, this paper focuses on both qualitative and quantitative research methods to observe the built environment around public transit stations and measure the temperatures and humidity levels to compare with the experienced temperatures and the built environment observations. The results show that the design of transit stations and the public realm significantly impacts a rider's experience. The findings show that passive cooling, shading, and vegetation as the best practices in the two case studies. Both transit systems have certain elements that work efficiently and other elements that need improvement to provide a better rider experience. Identifying these best practices helps develop recommendations for the future of designing transit systems in desert cities worldwide.
ContributorsAlbastaki, Mohamed (Author) / King, David (Thesis advisor) / Salon, Deborah (Committee member) / Kelley, Jason (Committee member) / Arizona State University (Publisher)
Created2022
171653-Thumbnail Image.png
Description
Complex perovskite materials, including Ba(Zn1/3Ta2/3)O3 (BZT), are commonly used to make resonators and filters in communication systems because of their low dielectric loss and high-quality factors (Q). Transition metal additives are introduced (i.e., Ni2+, Co2+, Mn2+) to act as sintering agents and tune their temperature coefficient to zero or near-zero.

Complex perovskite materials, including Ba(Zn1/3Ta2/3)O3 (BZT), are commonly used to make resonators and filters in communication systems because of their low dielectric loss and high-quality factors (Q). Transition metal additives are introduced (i.e., Ni2+, Co2+, Mn2+) to act as sintering agents and tune their temperature coefficient to zero or near-zero. However, losses in these commercial dielectric materials at cryogenic temperatures increase markedly due to spin-excitation resulting from the presence of paramagnetic defects. Applying a large magnetic field (e.g., 5 Tesla) quenches these losses and has allowed the study of other loss mechanisms present at low temperatures. Work was performed on Fe3+ doped LaAlO3. At high magnetic fields, the residual losses versus temperature plots exhibit Debye peaks at ~40 K, ~75 K, and ~215 K temperature and can be tentatively associated with defect reactions O_i^x+V_O^x→O_i^'+V_O^•, Fe_Al^x+V_Al^"→Fe_Al^'+V_Al^' and Al_i^x+Al_i^(••)→〖2Al〗_i^•, respectively. Peaks in the loss tangent versus temperature graph of Zn-deficient BZT indicate a higher concentration of defects and appear to result from conduction losses.Guided by the knowledge gained from this study, a systematic study to develop high-performance microwave materials for ultra-high performance at cryogenic temperatures was performed. To this end, the production and characterization of perovskite materials that were either undoped or contained non-paramagnetic additives were carried out. Synthesis of BZT ceramic with over 98% theoretical density was obtained using B2O3 or BaZrO3 additives. At 4 K, the highest Q x f product of 283,000 GHz was recorded for 5% BaZrO3 doped BZT. A portable, inexpensive open-air spectrometer was designed, built, and tested to make the electron paramagnetic resonance (EPR) technique more accessible for high-school and university lab instruction. In this design, the sample is placed near a dielectric resonator and does not need to be enclosed in a cavity, as is used in commercial EPR spectrometers. Permanent magnets used produce fields up to 1500 G, enabling EPR measurements up to 3 GHz.
ContributorsGajare, Siddhesh Girish (Author) / Newman, Nathan (Thesis advisor) / Alford, Terry (Committee member) / Tongay, Sefaattin (Committee member) / Chamberlin, Ralph (Committee member) / Arizona State University (Publisher)
Created2022
171428-Thumbnail Image.png
Description
Many important technologies, including electronics, computing, communications, optoelectronics, and sensing, are built on semiconductors. The band gap is a crucial factor in determining the electrical and optical properties of semiconductors. Beyond graphene, newly found two-dimensional (2D) materials have semiconducting bandgaps that range from the ultraviolet in hexagonal boron nitride to

Many important technologies, including electronics, computing, communications, optoelectronics, and sensing, are built on semiconductors. The band gap is a crucial factor in determining the electrical and optical properties of semiconductors. Beyond graphene, newly found two-dimensional (2D) materials have semiconducting bandgaps that range from the ultraviolet in hexagonal boron nitride to the terahertz and mid-infrared in bilayer graphene and black phosphorus, visible in transition metal dichalcogenides (TMDs). These 2D materials were shown to have highly controllable bandgaps which can be controlled by alloying. Only a small number of TMDs and monochalcogenides have been alloyed, though, because alloying compromised the material's Van der Waals (Vdw) property and the stability of the host crystal lattice phase. Phase transition in 2D materials is an interesting phenomenon where work has been done only on few TMDs namely MoTe2, MoS2, TaS2 etc.In order to change the band gaps and move them towards the UV (ultraviolet) and IR (infrared) regions, this work has developed new 2D alloys in InSe by alloying them with S and Te at 10% increasing concentrations. As the concentration of the chalcogens (S and Te) increased past a certain point, a structural phase transition in the alloys was observed. However, pinpointing the exact concentration for phase change and inducing phase change using external stimuli will be a thing of the future. The resulting changes in the crystal structure and band gap were characterized using some basic characterization techniques like scanning electron microscopy (SEM), X-ray Diffraction (XRD), Raman and photoluminescence spectroscopy.
ContributorsYarra, Anvesh Sai (Author) / Tongay, Sefaattin (Thesis advisor) / Yang, Sui (Committee member) / Alford, Terry (Committee member) / Arizona State University (Publisher)
Created2022