Matching Items (183)
135630-Thumbnail Image.png
Description
Climate change presents the urgent need for effective sustainable water management that is capable of preserving natural resources while maintaining economical stability. States like California rely heavily on groundwater pumping for agricultural use, contributing to land subsidence and insufficient returns to water resources. The recent California drought has impacted agricultural

Climate change presents the urgent need for effective sustainable water management that is capable of preserving natural resources while maintaining economical stability. States like California rely heavily on groundwater pumping for agricultural use, contributing to land subsidence and insufficient returns to water resources. The recent California drought has impacted agricultural production of certain crops. In this thesis, we present an agent-based model of farmers adapting to drought conditions by making crop choice decisions, much like the decisions Californian farmers have made. We use the Netlogo platform to capture the 2D spatial view of an agricultural system with changes in annual rainfall due to drought conditions. The goal of this model is to understand some of the simple rules farmers may follow to self-govern their consumption of a water resource. Farmer agents make their crop decisions based on deficit irrigation crop production function and a net present value discount rate. The farmers choose between a thirsty crop with a high production cost and a dry crop with a low production cost. Simulations results show that farmers switch crops in accordance with limited water and land resources. Farmers can maintain profit and yield by following simple rules of crop switching based on future yields and optimal irrigation. In drought conditions, individual agents expecting lower annual rainfall were able to increase their total profits. The maintenance of crop yield and profit is evidence of successful adaptation when farmers switch to crops that require less water.
ContributorsGokool, Rachael Shanta (Author) / Janssen, Marco (Thesis director) / Eakin, Hallie (Committee member) / School of Human Evolution and Social Change (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
130879-Thumbnail Image.png
Description
Major Depressive Disorder (MDD) affects over 300 million people worldwide, with the hippocampus showing decreased volume and activity in patients with MDD. The current study investigated whether a novel preclinical model of depression, unpredictable intermittent restraint (UIR), would decrease hippocampal neuronal dendritic complexity. Adult Sprague Dawley rats (24 male, 24

Major Depressive Disorder (MDD) affects over 300 million people worldwide, with the hippocampus showing decreased volume and activity in patients with MDD. The current study investigated whether a novel preclinical model of depression, unpredictable intermittent restraint (UIR), would decrease hippocampal neuronal dendritic complexity. Adult Sprague Dawley rats (24 male, 24 female) were equally divided into 4 groups: control males (CON-M), UIR males (UIR-M), control females (CON-F) and UIR females (UIR-F). UIR groups received restraint and shaking on an orbital shaker on a randomized schedule for 30 or 60 minutes/day for two to six days in a row for 26 days (21 total UIR days) before behavioral testing commenced. UIR continued and was interspersed between behavioral test days. At the end of behavioral testing, brains were processed. The behavior is published and not part of my honor’s thesis; my contribution involved quantifying and analyzing neurons in the hippocampus. Several neuronal types are found in the CA3 subregion of the hippocampus and I focused on short shaft (SS) neurons, which show different sensitivities to stress than the more common long shaft (LS) variety. Brains sections were mounted to slides and Golgi stained. SS neurons were drawn using a microscope with camera lucida attachment and quantified using the number of bifurcations and dendritic intersections as metrics for dendritic complexity in the apical and basal areas separately. The hypothesis that SS neurons in the CA3 region of the hippocampus would exhibit apical dendritic simplification in both sexes after UIR was not supported by our findings. In contrast, following UIR, SS apical dendrites were more complex in both sexes compared to controls. Although unexpected, we believe that the UIR paradigm was an effective stressor, robust enough to illicit neuronal adaptations. It appears that the time from the end of UIR to when the brain tissue was collected, or the post-stress recovery period, and/or repeated behavioral testing may have played a role in the observed increased neuronal complexity. Future studies are needed to parse out these potential effects.
ContributorsAcuna, Amanda Marie (Author) / Conrad, Cheryl (Thesis director) / Corbin, William (Committee member) / Olive, M. Foster (Committee member) / School of Life Sciences (Contributor) / Department of Psychology (Contributor) / Barrett, The Honors College (Contributor)
Created2020-12
130891-Thumbnail Image.png
Description
Tactile and proprioceptive sensory feedback are the two sensory modalities that make up haptic sensation. The degree which these two sensory modalities are integrated together is not very well known. To investigate this issue a set of experiments were set into motion separating these sensory modalities and testing what happens

Tactile and proprioceptive sensory feedback are the two sensory modalities that make up haptic sensation. The degree which these two sensory modalities are integrated together is not very well known. To investigate this issue a set of experiments were set into motion separating these sensory modalities and testing what happens when a person’s proprioceptive system is perturbed. A virtual reality system with haptic feedback along with a weighted object were utilized in a reach, grasp, and lift task. The subjects would lift two objects sequentially and try to judge which one was heavier. This project was split into three different experiments to measure the subject’s perception in different situations. The first experiment utilized the virtual reality system to measure the perception when the subject only has proprioceptive inputs. The second experiment would include the virtual reality system and the weighted object to act as a comparison to the first experiment with the additional tactile input. The third experiment would then add perturbations to the proprioceptive inputs through the virtual reality system to investigate how perception will change. Results from experiment 1 and 2 showed that subjects are almost just as accurate with weight discrimination even if they only have proprioceptive inputs however, subjects are much more consistent in their weight discrimination with both sensory modalities. Results from experiment 3 showed that subjective perception does change when the proprioception is perturbed but the magnitude of that change in perception depends on the perturbation performed.
ContributorsPerrine, Jacob (Author) / Santello, Marco (Thesis director) / Toma, Simone (Committee member) / Harrington Bioengineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2020-12
131000-Thumbnail Image.png
Description
Major Depressive Disorder (MDD) is a widespread mood disorder that affects more than 300 million people worldwide and yet, high relapse rates persist. This current study aimed to use an animal model for depression, unpredictable intermittent restraint (UIR), to investigate changes in a subset of neurons within the hippocampus, a

Major Depressive Disorder (MDD) is a widespread mood disorder that affects more than 300 million people worldwide and yet, high relapse rates persist. This current study aimed to use an animal model for depression, unpredictable intermittent restraint (UIR), to investigate changes in a subset of neurons within the hippocampus, a region of high susceptibility in MDD. Adult male and female Sprague-Dawley rats were randomly assigned to four treatment groups based on sex (n = 48, n = 12/group). Half of the rats underwent UIR that involved restraint with orbital shaking (30 min or 1 h) for 2-6 consecutive days, followed by one or two days of no stressors; the other half of the rats were undisturbed (CON). UIR rats were stressed for 28 days (21 days of actual stressors) before behavioral testing began with UIR continuing between testing days for nearly 70 days. Rats were then euthanized between 9 and 11 days after the last UIR session. Brains were processed for Golgi stain and long-shaft (LS) neurons within the hippocampal CA3a and CA3b regions were quantified for dendritic complexity using a Camera Lucida attachment. Our findings failed to support our hypothesis that UIR would produce apical dendritic retraction in CA3 hippocampal LS neurons in both males and females. Given that UIR failed to produce CA3 apical dendritic retraction in males, which is commonly observed in the literature, we discuss several reasons for these findings including, time from the end of UIR to when brains were sampled, and the effects of repeated cognitive testing. Given our published findings that UIR impaired spatial ability in males, but not females, we believe that UIR holds validity as a chronic stress paradigm, as UIR attenuated body weight gain in both males and females and produced reductions in thymus gland weight in UIR males. These findings corroborate UIR as an effective stressor in males and warrant further research into the timing of UIR-induced changes in hippocampal CA3 apical dendritic morphology.
ContributorsReynolds, Cindy Marie (Author) / Conrad, Cheryl D. (Thesis director) / Olive, M. Foster (Committee member) / School of Molecular Sciences (Contributor) / Department of English (Contributor) / Barrett, The Honors College (Contributor)
Created2020-12
131788-Thumbnail Image.png
Description
Coffee is an important link between the United States and Latin America and an important part of Latin America’s culture and economy. This paper looks at the similarities and differences between coffee organizations in Colombia, Ecuador, Peru, and Guatemala. Colombia has the strongest coffee organizations with the most political power.

Coffee is an important link between the United States and Latin America and an important part of Latin America’s culture and economy. This paper looks at the similarities and differences between coffee organizations in Colombia, Ecuador, Peru, and Guatemala. Colombia has the strongest coffee organizations with the most political power. Guatemala and Peru, to a lesser extent, have well organized and powerful organizations that make up their industry. However, Ecuador has a significantly less organized organization. At their core, each country has a similar structure. There is one organization on the national level that watches out for the industry as a whole. Underneath that, there are smaller, often regional organizations made up of cooperatives pooling their resources for export. They function in similar ways as the national organizations, but have less reach. At the bottom, there are individual cooperatives and independent farmers. These cooperatives do not have much reach or connection to international markets.
ContributorsChabin, James Edward (Author) / Janssen, Marco (Thesis director) / Taylor, Keith (Committee member) / School of Sustainability (Contributor) / School of International Letters and Cultures (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
131979-Thumbnail Image.png
Description
With opioid use disorder (OUD) being an epidemic, it is important to investigate the mechanisms as to why this is so. This study established a self-administration paradigm to model and investigate the mechanisms of polysubstance, sequential use in conjunction with the analysis of withdrawal symptomatology driven by opioid withdrawal. The

With opioid use disorder (OUD) being an epidemic, it is important to investigate the mechanisms as to why this is so. This study established a self-administration paradigm to model and investigate the mechanisms of polysubstance, sequential use in conjunction with the analysis of withdrawal symptomatology driven by opioid withdrawal. The independent variables were dichotomized into the control group (food/cocaine) and the experimental group (oxycodone/cocaine). We hypothesized that more cocaine would be self-administered on the first day of oxycodone withdrawal. In addition, we hypothesized that somatic signs of withdrawal would increase at 16 hours post-oxycodone self-administration. Finally, we hypothesized that cocaine intake during oxycodone withdrawal would potentiate subsequent oxycodone self-administration. Our findings revealed that animals readily discriminated between the active (food or oxycodone) and inactive levers - but will however require more animals to achieve the appropriate power. Further, the average cocaine infusions across phases exhibited significance between the oxycodone/cocaine and food/cocaine group, with the average cocaine infusions being lower in food than in oxycodone-experienced animals. This implies that the exacerbation of the sequential co-use pattern in this case yields an increase in cocaine infusions that may be driven by oxycodone withdrawal. Further, to characterize withdrawal from oxycodone self-administration, somatic signs were examined at either 0 or 16 hrs following completion of oxycodone self-administration. The oxycodone/cocaine group exhibited significantly lower body temperature at 16 hrs of oxycodone withdrawal compared to 0 hrs. No differences in somatic signs of withdrawal in the food/cocaine group was found between the two timepoints. Oxycodone withdrawal was not found to potentiate any subsequent self-administration of oxycodone. Future research is needed to uncover neurobiological underpinnings of motivated polysubstance use in order to discover novel pharmacotherapeutic treatments to decrease co-use of drugs of abuse. Overall, this study is of importance as it is the first to establish a working preclinical model of a clinically-relevant pattern of polysubstance use. By doing so, it enables an exceptional opportunity to examine co-use in a highly-controlled setting.
ContributorsUlangkaya, Hanaa Corsino (Author) / Gipson-Reichardt, Cassandra (Thesis director) / Olive, M. Foster (Committee member) / Department of Psychology (Contributor) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
133601-Thumbnail Image.png
Description
Most daily living tasks consist of pairing a series of sequential movements, e.g., reaching to a cup, grabbing the cup, lifting and returning the cup to your mouth. The process by which we control and mediate the smooth progression of these tasks is not well understood. One method which we

Most daily living tasks consist of pairing a series of sequential movements, e.g., reaching to a cup, grabbing the cup, lifting and returning the cup to your mouth. The process by which we control and mediate the smooth progression of these tasks is not well understood. One method which we can use to further evaluate these motions is known as Startle Evoked Movements (SEM). SEM is an established technique to probe the motor learning and planning processes by detecting muscle activation of the sternocleidomastoid muscles of the neck prior to 120ms after a startling stimulus is presented. If activation of these muscles was detected following a stimulus in the 120ms window, the movement is classified as Startle+ whereas if no sternocleidomastoid activation is detected after a stimulus in the allotted time the movement is considered Startle-. For a movement to be considered SEM, the activation of movements for Startle+ trials must be faster than the activation of Startle- trials. The objective of this study was to evaluate the effect that expertise has on sequential movements as well as determining if startle can distinguish when the consolidation of actions, known as chunking, has occurred. We hypothesized that SEM could distinguish words that were solidified or chunked. Specifically, SEM would be present when expert typists were asked to type a common word but not during uncommon letter combinations. The results from this study indicated that the only word that was susceptible to SEM, where Startle+ trials were initiated faster than Startle-, was an uncommon task "HET" while the common words "AND" and "THE" were not. Additionally, the evaluation of the differences between each keystroke for common and uncommon words showed that Startle was unable to distinguish differences in motor chunking between Startle+ and Startle- trials. Explanations into why these results were observed could be related to hand dominance in expert typists. No proper research has been conducted to evaluate the susceptibility of the non-dominant hand's fingers to SEM, and the results of future studies into this as well as the results from this study can impact our understanding of sequential movements.
ContributorsMieth, Justin Richard (Author) / Honeycutt, Claire (Thesis director) / Santello, Marco (Committee member) / Harrington Bioengineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
133679-Thumbnail Image.png
Description
Alzheimer’s disease (AD) is a progressive cognitive and behavior disorder that is characterized by the deposition of extracellular Aβ plaques, intracellular neurofibrillary tangles, and neuroinflammation. Aβ is generated by cleavage of the amyloid precursor protein (APP) by β-secretase (BACE1) and, subsequently, y- secretase. In recent years, there has been an

Alzheimer’s disease (AD) is a progressive cognitive and behavior disorder that is characterized by the deposition of extracellular Aβ plaques, intracellular neurofibrillary tangles, and neuroinflammation. Aβ is generated by cleavage of the amyloid precursor protein (APP) by β-secretase (BACE1) and, subsequently, y- secretase. In recent years, there has been an increasing interest in studying and understanding inflammation as a therapeutic target for AD. Inflammation manifests in the brain in the form of activated microglia and astrocytes. These cells are able to release high levels of inflammatory cytokines such as Tumor Necrosis Factor-α (TNF-α). TNF-α is a major cytokine, which is involved in early inflammatory events and plays a role in the progression of AD pathology. There are currently no treatments that target chronic neuroinflammation. However, previous work in our laboratory with transgenic mice modeling AD suggested that the anti-cancer drug lenalidomide could lower neuroinflammation and slow AD progression, though the cellular and molecular mechanisms are yet to be elucidated. Here we hypothesized that lenalidomide can modulate TNF-α production in microglia and decrease amyloidogenesis. Using immortal cell lines mimicking several brain cell types, we discovered that lenalidomide is likely to decrease inflammation by modulating microglia cells rather than neurons or astrocytes. In addition, the drug may prevent the overexpression of BACE1 upon inflammation, thus blocking the overproduction of Aβ. If confirmed, these results could lead to a better understanding of how inflammation regulates Aβ synthesis and provide novel cellular and molecular therapeutic targets to control the progression AD.
ContributorsGujju, Manasa (Author) / DeCourt, Boris (Thesis director) / Olive, M. Foster (Committee member) / Department of Psychology (Contributor) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
134051-Thumbnail Image.png
Description
Nicotine addiction remains a prevalent public health issue, and the FDA has released a statement outlining the systematic reduction of nicotine to non-zero levels in the coming years. Current research has not yet established the effects of abrupt nicotine dose reduction on vulnerability to relapse, nor has abrupt nicotine dose

Nicotine addiction remains a prevalent public health issue, and the FDA has released a statement outlining the systematic reduction of nicotine to non-zero levels in the coming years. Current research has not yet established the effects of abrupt nicotine dose reduction on vulnerability to relapse, nor has abrupt nicotine dose reduction been evaluated in terms of behavioral economic characteristics of demand and elasticity been evaluated for reduced doses of nicotine. Using a rat model, we first evaluated the comparability of between- and within-session protocols for establishing characteristics of demand and elasticity for nicotine to shorten experimental timelines for this study and future studies. We then tested environmental enrichment and sex as factors of elasticity of demand for nicotine. Using a rat model of relapse to cues, we also examined the effects of nicotine dose-reduction on vulnerability to relapse. We found differences in maximum consumption and demand between the between- and within-session protocols, as well as sex differences in elasticity of demand on the within-session protocol where male demand was more elastic than female demand. Additionally, we found that enrichment significantly increased elasticity of demand for nicotine for both males and females. Finally, preliminary analyses revealed that nicotine dose reduction yields more inelastic demand and higher maximum consumption, and these outcomes predict increased time to extinction of the association between nicotine and contingent cues, and increased rates of relapse. These studies highlight the usefulness and validity of within-session protocols, and also illustrate the necessity for rigorous testing of forced dose reduction on nicotine vulnerability.
ContributorsCabrera-Brown, Gabriella Paula (Author) / Gipson-Reichardt, Cassandra (Thesis director) / Olive, M. Foster (Committee member) / Davis, Mary (Committee member) / Sanford School of Social and Family Dynamics (Contributor) / Department of Psychology (Contributor) / Barrett, The Honors College (Contributor)
Created2017-12
134136-Thumbnail Image.png
Description
Biomarkers are the cornerstone of modern-day medicine. They are defined as any biological substance in or outside the body that gives insight to the body's condition. Doctors and researchers can measure specific biomarkers to diagnose and treat patients, such as the concentration of hemoglobin Alc and its connection to diabetes.

Biomarkers are the cornerstone of modern-day medicine. They are defined as any biological substance in or outside the body that gives insight to the body's condition. Doctors and researchers can measure specific biomarkers to diagnose and treat patients, such as the concentration of hemoglobin Alc and its connection to diabetes. There are a variety of methods, or assays, to detect biomarkers, but the most common assay is enzyme-linked immunosorbent assay (ELISA). A new-generation assay termed mass spectrometric immunoassay (MSIA) can measure proteoforms, the different chemical variations of proteins, and their relative abundance. ELISA on the other hand measures the overall concentration of protein in the sample. Measuring each of the proteoforms of a protein is important because only one or two variations could be biologically significant and/or cause diseases. However, running MSIA is expensive. For this reason, an alternative plate-based MSIA technique was tested for its ability to detect the proteoforms of a protein called apolipoprotein C-III (ApoC-III). This technique combines the protein capturing procedure of ELISA to isolate the protein with detection in a mass spectrometer. A larger amount of ApoC-III present in the body indicates a considerable risk for coronary heart disease. The precision of the assay is determined on the coefficient of variation (CV). A CV value is the ratio of standard deviation in relation to the mean, represented as a percentage. The smaller the percentage, the less variation the assay has, and therefore the more ability it has to detect subtle changes in the biomarker. An accepted CV would be less than 10% for single-day tests (intra-day) and less than 15% for multi-day tests (inter-day). The plate-based MSIA was started by first coating a 96-well round bottom plate with 2.5 micrograms of ApoC-III antibody. Next, a series of steps were conducted: a buffer wash, then the sample incubation, followed by another buffer wash and two consecutive water washes. After the final wash, the wells were filled with a MALDI matrix, then spotted onto a gold plate to dry. The dry gold target was then placed into a MALDI-TOF mass spectrometer to produce mass spectra for each spot. The mass spectra were calibrated and the area underneath each of the four peaks representing the ApoC-III proteoforms was exported as an Excel file. The intra-day CV values were found by dividing the standard deviation by the average relative abundance of each peak. After repeating the same procedure for three more days, the inter-day CVs were found using the same method. After completing the experiment, the CV values were all within the acceptable guidelines. Therefore, the plate-based MSIA is a viable alternative for finding proteoforms than the more expensive MSIA tips. To further validate this, additional tests will need to be conducted with different proteins and number of samples to determine assay flexibility.
ContributorsTieu, Luc (Author) / Borges, Chad (Thesis director) / Nedelkov, Dobrin (Committee member) / Harrington Bioengineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2017-12