Matching Items (160)
Filtering by

Clear all filters

128327-Thumbnail Image.png
Description

Experiments have made important contributions to our understanding of human behavior, including behavior relevant for understanding social-ecological systems. When there is a conflict between individual and group interests in social-ecological systems, social dilemmas occur. From the many types of social-dilemma formulations that are used to study collective action, common-pool resource

Experiments have made important contributions to our understanding of human behavior, including behavior relevant for understanding social-ecological systems. When there is a conflict between individual and group interests in social-ecological systems, social dilemmas occur. From the many types of social-dilemma formulations that are used to study collective action, common-pool resource and public-good dilemmas are most relevant for social-ecological systems. Experimental studies of both common-pool resource and public-good dilemmas have shown that many predictions based on the conventional theory of collective action, which assumes rational, self-interested behavior, do not hold. More cooperation occurs than predicted (Ledyard 1995), “cheap talk” increases cooperation (Ostrom 2006), and participants are willing to invest in sanctioning free riders (Yamagishi 1986, Ostrom et al. 1992, Fehr and Gächter 2000, Chaudhuri 2011). Experiments have also demonstrated a diversity of motivations, which affect individual decisions about cooperation and sanctioning (see Fehr and Fischbacher 2002 and Sobel 2005 for reviews, and Bowles 2008 for policy implications).

Created2015
Description

Time-resolved fluorescence spectroscopy was used to explore the pathway and kinetics of energy transfer in photosynthetic membrane vesicles (chromatophores) isolated from Rhodobacter (Rba.) sphaeroides cells harvested 2, 4, 6 or 24 hours after a transition from growth in high to low level illumination. As previously observed, this light intensity transition

Time-resolved fluorescence spectroscopy was used to explore the pathway and kinetics of energy transfer in photosynthetic membrane vesicles (chromatophores) isolated from Rhodobacter (Rba.) sphaeroides cells harvested 2, 4, 6 or 24 hours after a transition from growth in high to low level illumination. As previously observed, this light intensity transition initiates the remodeling of the photosynthetic apparatus and an increase in the number of light harvesting 2 (LH2) complexes relative to light harvesting 1 (LH1) and reaction center (RC) complexes. It has generally been thought that the increase in LH2 complexes served the purpose of increasing the overall energy transmission to the RC. However, fluorescence lifetime measurements and analysis in terms of energy transfer within LH2 and between LH2 and LH1 indicate that, during the remodeling time period measured, only a portion of the additional LH2 generated are well connected to LH1 and the reaction center. The majority of the additional LH2 fluorescence decays with a lifetime comparable to that of free, unconnected LH2 complexes. The presence of large LH2-only domains has been observed by atomic force microscopy in Rba. sphaeroides chromatophores (Bahatyrova et al., Nature, 2004, 430, 1058), providing structural support for the existence of pools of partially connected LH2 complexes. These LH2-only domains represent the light-responsive antenna complement formed after a switch in growth conditions from high to low illumination, while the remaining LH2 complexes occupy membrane regions containing mixtures of LH2 and LH1–RC core complexes. The current study utilized a multi-parameter approach to explore the fluorescence spectroscopic properties related to the remodeling process, shedding light on the structure-function relationship of the photosynthetic assembles. Possible reasons for the accumulation of these largely disconnected LH2-only pools are discussed.

ContributorsDriscoll, Brent (Author) / Lunceford, Chad (Author) / Lin, Su (Author) / Woronowicz, K. (Author) / Niederman, R. A. (Author) / Woodbury, Neal (Author) / College of Liberal Arts and Sciences (Contributor)
Created2014-08-28
129548-Thumbnail Image.png
Description

Our ability to uncover complex network structure and dynamics from data is fundamental to understanding and controlling collective dynamics in complex systems. Despite recent progress in this area, reconstructing networks with stochastic dynamical processes from limited time series remains to be an outstanding problem. Here we develop a framework based

Our ability to uncover complex network structure and dynamics from data is fundamental to understanding and controlling collective dynamics in complex systems. Despite recent progress in this area, reconstructing networks with stochastic dynamical processes from limited time series remains to be an outstanding problem. Here we develop a framework based on compressed sensing to reconstruct complex networks on which stochastic spreading dynamics take place. We apply the methodology to a large number of model and real networks, finding that a full reconstruction of inhomogeneous interactions can be achieved from small amounts of polarized (binary) data, a virtue of compressed sensing. Further, we demonstrate that a hidden source that triggers the spreading process but is externally inaccessible can be ascertained and located with high confidence in the absence of direct routes of propagation from it. Our approach thus establishes a paradigm for tracing and controlling epidemic invasion and information diffusion in complex networked systems.

ContributorsShen, Zhesi (Author) / Wang, Wen-Xu (Author) / Fan, Ying (Author) / Di, Zengru (Author) / Lai, Ying-Cheng (Author) / Ira A. Fulton Schools of Engineering (Contributor)
Created2014-07-01
128747-Thumbnail Image.png
Description

Improved tools for providing specific intraoperative diagnoses could improve patient care. In neurosurgery, intraoperatively differentiating non-operative lesions such as CNS B-cell lymphoma from operative lesions can be challenging, often necessitating immunohistochemical (IHC) procedures which require up to 24-48 hours. Here, we evaluate the feasibility of generating rapid ex vivo specific

Improved tools for providing specific intraoperative diagnoses could improve patient care. In neurosurgery, intraoperatively differentiating non-operative lesions such as CNS B-cell lymphoma from operative lesions can be challenging, often necessitating immunohistochemical (IHC) procedures which require up to 24-48 hours. Here, we evaluate the feasibility of generating rapid ex vivo specific labeling using a novel lymphoma-specific fluorescent switchable aptamer. Our B-cell lymphoma-specific switchable aptamer produced only low-level fluorescence in its unbound conformation and generated an 8-fold increase in fluorescence once bound to its target on CD20-positive lymphoma cells. The aptamer demonstrated strong binding to B-cell lymphoma cells within 15 minutes of incubation as observed by flow cytometry. We applied the switchable aptamer to ex vivo xenograft tissue harboring B-cell lymphoma and astrocytoma, and within one hour specific visual identification of lymphoma was routinely possible. In this proof-of-concept study in human cell culture and orthotopic xenografts, we conclude that a fluorescent switchable aptamer can provide rapid and specific labeling of B-cell lymphoma, and that developing aptamer-based labeling approaches could simplify tissue staining and drastically reduce time to histopathological diagnoses compared with IHC-based methods. We propose that switchable aptamers could enhance expeditious, accurate intraoperative decision-making.

ContributorsGeorges, Joseph F. (Author) / Liu, Xiaowei (Author) / Eschbacher, Jennifer (Author) / Nichols, Joshua (Author) / Mooney, Michael A. (Author) / Joy, Anna (Author) / Spetzler, Robert F. (Author) / Feuerstein, Burt G. (Author) / Preul, Mark C. (Author) / Anderson, Trent (Author) / Yan, Hao (Author) / Nakaji, Peter (Author) / ASU Biodesign Center Immunotherapy, Vaccines and Virotherapy (Contributor) / Biodesign Institute (Contributor)
Created2015-04-15
Description

Two classes of scaling behaviours, namely the super-linear scaling of links or activities, and the sub-linear scaling of area, diversity, or time elapsed with respect to size have been found to prevail in the growth of complex networked systems. Despite some pioneering modelling approaches proposed for specific systems, whether there

Two classes of scaling behaviours, namely the super-linear scaling of links or activities, and the sub-linear scaling of area, diversity, or time elapsed with respect to size have been found to prevail in the growth of complex networked systems. Despite some pioneering modelling approaches proposed for specific systems, whether there exists some general mechanisms that account for the origins of such scaling behaviours in different contexts, especially in socioeconomic systems, remains an open question. We address this problem by introducing a geometric network model without free parameter, finding that both super-linear and sub-linear scaling behaviours can be simultaneously reproduced and that the scaling exponents are exclusively determined by the dimension of the Euclidean space in which the network is embedded. We implement some realistic extensions to the basic model to offer more accurate predictions for cities of various scaling behaviours and the Zipf distribution reported in the literature and observed in our empirical studies. All of the empirical results can be precisely recovered by our model with analytical predictions of all major properties. By virtue of these general findings concerning scaling behaviour, our models with simple mechanisms gain new insights into the evolution and development of complex networked systems.

ContributorsZhang, Jiang (Author) / Li, Xintong (Author) / Wang, Xinran (Author) / Wang, Wen-Xu (Author) / Wu, Lingfei (Author) / College of Liberal Arts and Sciences (Contributor)
Created2015-04-29
147652-Thumbnail Image.png
Description

DNA nanotechnology is ideally suited for numerous applications from the crystallization and solution of macromolecular structures to the targeted delivery of therapeutic molecules. The foundational goal of structural DNA nanotechnology was the development of a lattice to host proteins for crystal structure solution. To further progress towards this goal, 36

DNA nanotechnology is ideally suited for numerous applications from the crystallization and solution of macromolecular structures to the targeted delivery of therapeutic molecules. The foundational goal of structural DNA nanotechnology was the development of a lattice to host proteins for crystal structure solution. To further progress towards this goal, 36 unique four-armed DNA junctions were designed and crystallized for eventual solution of their 3D structures. While most of these junctions produced macroscale crystals which diffracted successfully, several prevented crystallization. Previous results used a fixed isomer and subsequent investigations adopted an alternate isomer to investigate the impact of these small sequence changes on the stability and structural properties of these crystals. DNA nanotechnology has also shown promise for a variety biomedical applications. In particular, DNA origami has been demonstrated as a promising tool for targeted and efficient delivery of drugs and vaccines due to their programmability and addressability to suit a variety of therapeutic cargo and biological functions. To this end, a previously designed DNA barrel nanostructure with a unique multimerizable pegboard architecture has been constructed and characterized via TEM for later evaluation of its stability under biological conditions for use in the targeted delivery of cargo, including CRISPR-containing adeno-associated viruses (AAVs) and mRNA.

ContributorsHostal, Anna Elizabeth (Author) / Anderson, Karen (Thesis director) / Stephanopoulos, Nicholas (Committee member) / Yan, Hao (Committee member) / School of Life Sciences (Contributor) / School of Molecular Sciences (Contributor) / School of International Letters and Cultures (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
Description
Community-based volunteer organizations are critical to natural resource management in the United States. However, due to volunteer involvement, these organizations struggle with collective action problems: coping with free riding, solving commitment problems, arranging for the supply of new institutions, and monitoring individual compliance with sets of rules. In this study,

Community-based volunteer organizations are critical to natural resource management in the United States. However, due to volunteer involvement, these organizations struggle with collective action problems: coping with free riding, solving commitment problems, arranging for the supply of new institutions, and monitoring individual compliance with sets of rules. In this study, we explore how volunteer organizations can overcome these challenges. To explore how they overcome these challenges, we use the Institutional Analysis and Development framework and the Institutional Design Principles. These frameworks help us understand the impact of natural resource conditions, community attributes, and the rules in use impact volunteer organizations. For this research, we focused on lake organizations in Wisconsin. We collected our data through semi-structured interviews with thirty-one lake organizations and public data. The data were analyzed using constant comparison and linear regression, followed by qualitative comparative analysis (QCA). We reinforce the importance of considering the system holistically when managing a resource the natural resource conditions, the community attributes, and the rules in use. Our study shows the importance of graduated sanctions and low-cost conflict resolution on social-ecological system outcomes. Volunteer-based resource management are an effective way to tailor management strategies to the natural resource condition and the community attributes.
ContributorsWhittaker, Dane (Author) / Janssen, Marco (Contributor) / Janssen,Marco (Contributor) / Leonard, Bryan (Contributor) / Solomon, Chris (Contributor)
Created2020-04-24
128200-Thumbnail Image.png
Description

The structure and dynamics of ecosystems can affect the information available to resource users on the state of the common resource and the actions of other resource users. We present results from laboratory experiments that showed that the availability of information about the actions of other participants affected the level

The structure and dynamics of ecosystems can affect the information available to resource users on the state of the common resource and the actions of other resource users. We present results from laboratory experiments that showed that the availability of information about the actions of other participants affected the level of cooperation. Since most participants in commons dilemmas can be classified as conditional cooperators, not having full information about the actions of others may affect their decisions. When participants had more information about others, there was a more rapid reduction of the resource in the first round of the experiment. When communication was allowed, limiting the information available made it harder to develop effective institutional arrangements. When communication was not allowed, there was a more rapid decline of performance in groups where information was limited. In sum, the results suggest that making information available to others can have an important impact on the conditional cooperation and the effectiveness of communication.

Created2013
128797-Thumbnail Image.png
Description

Background: Chemistry and particularly enzymology at surfaces is a topic of rapidly growing interest, both in terms of its role in biological systems and its application in biocatalysis. Existing protein immobilization approaches, including noncovalent or covalent attachments to solid supports, have difficulties in controlling protein orientation, reducing nonspecific absorption and preventing

Background: Chemistry and particularly enzymology at surfaces is a topic of rapidly growing interest, both in terms of its role in biological systems and its application in biocatalysis. Existing protein immobilization approaches, including noncovalent or covalent attachments to solid supports, have difficulties in controlling protein orientation, reducing nonspecific absorption and preventing protein denaturation. New strategies for enzyme immobilization are needed that allow the precise control over orientation and position and thereby provide optimized activity.

Methodology/Principal Findings: A method is presented for utilizing peptide ligands to immobilize enzymes on surfaces with improved enzyme activity and stability. The appropriate peptide ligands have been rapidly selected from high-density arrays and when desirable, the peptide sequences were further optimized by single-point variant screening to enhance both the affinity and activity of the bound enzyme. For proof of concept, the peptides that bound to β-galactosidase and optimized its activity were covalently attached to surfaces for the purpose of capturing target enzymes. Compared to conventional methods, enzymes immobilized on peptide-modified surfaces exhibited higher specific activity and stability, as well as controlled protein orientation.

Conclusions/Significance: A simple method for immobilizing enzymes through specific interactions with peptides anchored on surfaces has been developed. This approach will be applicable to the immobilization of a wide variety of enzymes on surfaces with optimized orientation, location and performance, and provides a potential mechanism for the patterned self-assembly of multiple enzymes on surfaces.

ContributorsFu, Jinglin (Author) / Reinhold, Jeremy (Author) / Woodbury, Neal (Author) / Biodesign Institute (Contributor)
Created2011-04-08
136040-Thumbnail Image.png
Description
Collaborative research is not only a form of social and human capital and a public good, but also a fundamental elicitor of positive Collective Action. Collaborative Research Networks can serve as models of proactive and purposive Collective Action and catalysts of societal change, if they function as more than hubs

Collaborative research is not only a form of social and human capital and a public good, but also a fundamental elicitor of positive Collective Action. Collaborative Research Networks can serve as models of proactive and purposive Collective Action and catalysts of societal change, if they function as more than hubs of research and knowledge. It is the goal of this Honors Thesis to examine the current nature under which collaborative research networks, focused on matters of Global Health or Sustainability, operate., how they are organized, what type of collaboration they engage in, and who collaborates with whom. A better understanding of these types of networks can lead to the formation of more effective networks that can develop innovative solutions to our collective Global Health and Sustainability problems.
ContributorsHodzic, Mirna (Author) / Van Der Leeuw, Sander (Thesis director) / Janssen, Marco (Committee member) / Schoon, Michael (Committee member) / Barrett, The Honors College (Contributor)
Created2012-05