Matching Items (228)
128803-Thumbnail Image.png
Description

The group I metabotropic glutamate receptors (mGluR1a and mGluR5) are important modulators of neuronal structure and function. Although these receptors share common signaling pathways, they are capable of having distinct effects on cellular plasticity. We investigated the individual effects of mGluR1a or mGluR5 activation on dendritic spine density in medium

The group I metabotropic glutamate receptors (mGluR1a and mGluR5) are important modulators of neuronal structure and function. Although these receptors share common signaling pathways, they are capable of having distinct effects on cellular plasticity. We investigated the individual effects of mGluR1a or mGluR5 activation on dendritic spine density in medium spiny neurons in the nucleus accumbens (NAc), which has become relevant with the potential use of group I mGluR based therapeutics in the treatment of drug addiction. We found that systemic administration of mGluR subtype-specific positive allosteric modulators had opposite effects on dendritic spine densities. Specifically, mGluR5 positive modulation decreased dendritic spine densities in the NAc shell and core, but was without effect in the dorsal striatum, whereas increased spine densities in the NAc were observed with mGluR1a positive modulation. Additionally, direct activation of mGluR5 via CHPG administration into the NAc also decreased the density of dendritic spines. These data provide insight on the ability of group I mGluRs to induce structural plasticity in the NAc and demonstrate that the group I mGluRs are capable of producing not just distinct, but opposing, effects on dendritic spine density.

ContributorsGross, Kellie S. (Author) / Brandner, Dieter D. (Author) / Martinez, Luis A. (Author) / Olive, M. Foster (Author) / Meisel, Robert L. (Author) / Mermelstein, Paul G. (Author) / College of Liberal Arts and Sciences (Contributor)
Created2016-09-12
128721-Thumbnail Image.png
Description

Vegetarian diets are associated with factors that may not support bone health, such as low body mass and low intakes of protein; yet, these diets are alkaline, a factor that favors bone mineral density (BMD). This study compared the correlates of BMD in young, non-obese adults consuming meat-based (n =

Vegetarian diets are associated with factors that may not support bone health, such as low body mass and low intakes of protein; yet, these diets are alkaline, a factor that favors bone mineral density (BMD). This study compared the correlates of BMD in young, non-obese adults consuming meat-based (n = 27), lacto-ovo vegetarian (n = 27), or vegan (n = 28) diets for ≥1 year. A 24 h diet recall, whole body DXA scan, 24 h urine specimen, and fasting blood sample were collected from participants. BMD did not differ significantly between groups. Protein intake was reduced ~30% in individuals consuming lacto-ovo and vegan diets as compared to those consuming meat-based diets (68 ± 24, 69 ± 29, and 97 ± 47 g/day respectively, p = 0.006); yet dietary protein was only associated with BMD for those following vegan diets. Urinary pH was more alkaline in the lacto-ovo and vegan groups versus omnivores (6.5 ± 0.4, 6.7 ± 0.4, and 6.2 ± 0.4 respectively, p = 0.003); yet urinary pH was associated with BMD in omnivores only. These data suggest that plant-based diets are not detrimental to bone in young adults. Moreover, diet prescriptions for bone health may vary among diet groups: increased fruit and vegetable intake for individuals with high meat intakes and increased plant protein intake for individuals who follow a vegetarian diet plan.

ContributorsKnurick, Jessica (Author) / Johnston, Carol (Author) / Wherry, Sarah J. (Author) / Aguayo, Izayadeth (Author) / College of Health Solutions (Contributor)
Created2015-05-11
128725-Thumbnail Image.png
Description

In spite of well-documented health benefits of vegetarian diets, less is known regarding the effects of these diets on athletic performance. In this cross-sectional study, we compared elite vegetarian and omnivore adult endurance athletes for maximal oxygen uptake (VO2 max) and strength. Twenty-seven vegetarian (VEG) and 43 omnivore (OMN) athletes

In spite of well-documented health benefits of vegetarian diets, less is known regarding the effects of these diets on athletic performance. In this cross-sectional study, we compared elite vegetarian and omnivore adult endurance athletes for maximal oxygen uptake (VO2 max) and strength. Twenty-seven vegetarian (VEG) and 43 omnivore (OMN) athletes were evaluated using VO2 max testing on the treadmill, and strength assessment using a dynamometer to determine peak torque for leg extensions. Dietary data were assessed using detailed seven-day food logs. Although total protein intake was lower among vegetarians in comparison to omnivores, protein intake as a function of body mass did not differ by group (1.2 ± 0.3 and 1.4 ± 0.5 g/kg body mass for VEG and OMN respectively, p = 0.220). VO2 max differed for females by diet group (53.0 ± 6.9 and 47.1 ± 8.6 mL/kg/min for VEG and OMN respectively, p < 0.05) but not for males (62.6 ± 15.4 and 55.7 ± 8.4 mL/kg/min respectively). Peak torque did not differ significantly between diet groups. Results from this study indicate that vegetarian endurance athletes’ cardiorespiratory fitness was greater than that for their omnivorous counterparts, but that peak torque did not differ between diet groups. These data suggest that vegetarian diets do not compromise performance outcomes and may facilitate aerobic capacity in athletes.

ContributorsLynch, Heidi (Author) / Wharton, Christopher (Author) / Johnston, Carol (Author) / College of Health Solutions (Contributor)
Created2016-11-15
128733-Thumbnail Image.png
Description

Positive allosteric modulators (PAMs) of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors are a diverse class of compounds that increase fast excitatory transmission in the brain. AMPA PAMs have been shown to facilitate long-term potentiation, strengthen communication between various cortical and subcortical regions, and some of these compounds increase the production and release

Positive allosteric modulators (PAMs) of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors are a diverse class of compounds that increase fast excitatory transmission in the brain. AMPA PAMs have been shown to facilitate long-term potentiation, strengthen communication between various cortical and subcortical regions, and some of these compounds increase the production and release of brain-derived neurotrophic factor (BDNF) in an activity-dependent manner. Through these mechanisms, AMPA PAMs have shown promise as broad spectrum pharmacotherapeutics in preclinical and clinical studies for various neurodegenerative and psychiatric disorders. In recent years, a small collection of preclinical animal studies has also shown that AMPA PAMs may have potential as pharmacotherapeutic adjuncts to extinction-based or cue-exposure therapies for the treatment of drug addiction. The present paper will review this preclinical literature, discuss novel data collected in our laboratory, and recommend future research directions for the possible development of AMPA PAMs as anti-addiction medications.

ContributorsWatterson, Lucas (Author) / Olive, M. Foster (Author) / College of Liberal Arts and Sciences (Contributor)
Created2013-12-30
128670-Thumbnail Image.png
Description

Studies utilizing selective pharmacological antagonists or targeted gene deletion have demonstrated thattype 5 metabotropic glutamate receptors (mGluR5) are critical mediators and potential therapeutic targets for the treatment of numerous disorders of the central nervous system (CNS), including depression, anxiety, drug addiction, chronic pain, Fragile X syndrome, Parkinson’s disease, and gastroesophageal

Studies utilizing selective pharmacological antagonists or targeted gene deletion have demonstrated thattype 5 metabotropic glutamate receptors (mGluR5) are critical mediators and potential therapeutic targets for the treatment of numerous disorders of the central nervous system (CNS), including depression, anxiety, drug addiction, chronic pain, Fragile X syndrome, Parkinson’s disease, and gastroesophageal reflux disease. However, in recent years, the development of positive allosteric modulators (PAMs) of the mGluR5 receptor have revealed that allosteric activation of this receptor may also be of potential therapeutic benefit for the treatment of other CNS disorders, including schizophrenia, cognitive deficits associated with chronic drug use, and deficits in extinction learning. Here we summarize the discovery and characterization of various mGluR5 PAMs, with an emphasis on those that are systemically active. We will also review animal studies showing that these molecules have potential efficacy as novel antipsychotic agents. Finally, we will summarize findings that suggest that mGluR5 PAMs have pro-cognitive effects such as the ability toenhance synaptic plasticity, improve performance in various learning and memory tasks, including extinction of drug-seeking behavior, and reverse cognitive deficits produced by chronic drug use.

ContributorsCleva, Richard (Author) / Olive, M. Foster (Author) / College of Liberal Arts and Sciences (Contributor)
Created2011-03-02
128678-Thumbnail Image.png
Description

Glutamate plays a pivotal role in drug addiction, and the N-methyl-D-aspartate (NMDA) glutamate receptor subtype serves as a molecular target for several drugs of abuse. In this review, we will provide an overview of NMDA receptor structure and function, followed by a review of the mechanism of action, clinical efficacy,

Glutamate plays a pivotal role in drug addiction, and the N-methyl-D-aspartate (NMDA) glutamate receptor subtype serves as a molecular target for several drugs of abuse. In this review, we will provide an overview of NMDA receptor structure and function, followed by a review of the mechanism of action, clinical efficacy, and side effect profile of NMDA receptor ligands that are currently in use or being explored for the treatment of drug addiction. These ligands include the NMDA receptor modulators memantine and acamprosate, as well as the partial NMDA agonist D-cycloserine. Data collected to date suggest that direct NMDA receptor modulators have relatively limited efficacy in the treatment of drug addiction, and that partial agonism of NMDA receptors may have some efficacy with regards to extinction learning during cue exposure therapy. However, the lack of consistency in results to date clearly indicates that additional studies are needed, as are studies examining novel ligands with indirect mechanisms for altering NMDA receptor function.

ContributorsTomek, Seven (Author) / LaCrosse, Amber (Author) / Nemirovsky, Natali (Author) / Olive, M. Foster (Author) / College of Liberal Arts and Sciences (Contributor)
Created2013-02-06
136040-Thumbnail Image.png
Description
Collaborative research is not only a form of social and human capital and a public good, but also a fundamental elicitor of positive Collective Action. Collaborative Research Networks can serve as models of proactive and purposive Collective Action and catalysts of societal change, if they function as more than hubs

Collaborative research is not only a form of social and human capital and a public good, but also a fundamental elicitor of positive Collective Action. Collaborative Research Networks can serve as models of proactive and purposive Collective Action and catalysts of societal change, if they function as more than hubs of research and knowledge. It is the goal of this Honors Thesis to examine the current nature under which collaborative research networks, focused on matters of Global Health or Sustainability, operate., how they are organized, what type of collaboration they engage in, and who collaborates with whom. A better understanding of these types of networks can lead to the formation of more effective networks that can develop innovative solutions to our collective Global Health and Sustainability problems.
ContributorsHodzic, Mirna (Author) / Van Der Leeuw, Sander (Thesis director) / Janssen, Marco (Committee member) / Schoon, Michael (Committee member) / Barrett, The Honors College (Contributor)
Created2012-05
Description
Skin elasticity, a key indicator of skin health, is influenced by various factors including diet and body composition. This study, led by Myka Williams as part of her Barrett, The Honors College Thesis Project at Arizona State University under the guidance of Dr. Carol Johnston and Dr. Sandy Mayol-Kreiser, investigates

Skin elasticity, a key indicator of skin health, is influenced by various factors including diet and body composition. This study, led by Myka Williams as part of her Barrett, The Honors College Thesis Project at Arizona State University under the guidance of Dr. Carol Johnston and Dr. Sandy Mayol-Kreiser, investigates the relationship between diet—specifically vegetarian and omnivorous patterns—and skin elasticity. Utilizing the ElastiMeter from Delfin Technologies, we assessed the skin elasticity of 38 individuals from the ASU community. Our findings revealed no significant difference in skin elasticity between the dietary groups. However, intriguing correlations emerged between participants' Body Mass Index (BMI) and skin elasticity. These initial findings suggest the potential influence of body composition on skin health, warranting further research with additional parameters to strengthen and expand upon these observations.
ContributorsWilliams, Myka (Author) / Johnston, Carol (Thesis director) / Mayol-Kreiser, Sandy (Committee member) / Barrett, The Honors College (Contributor) / School of Life Sciences (Contributor) / School of Human Evolution & Social Change (Contributor)
Created2024-05