Matching Items (1,587)
Filtering by

Clear all filters

151434-Thumbnail Image.png
Description
Understanding the properties and formation histories of individual stars in galaxies remains one of the most important areas in astrophysics. The impact of the Hubble Space Telescope<\italic> (HST<\italic>) has been revolutionary, providing deep observations of nearby galaxies at high resolution and unprecedented sensitivity over a wavelength range from near-ultraviolet to

Understanding the properties and formation histories of individual stars in galaxies remains one of the most important areas in astrophysics. The impact of the Hubble Space Telescope<\italic> (HST<\italic>) has been revolutionary, providing deep observations of nearby galaxies at high resolution and unprecedented sensitivity over a wavelength range from near-ultraviolet to near-infrared. In this study, I use deep HST<\italic> imaging observations of three nearby star-forming galaxies (M83, NGC 4214, and CGCG 269-049) based on the HST<\italic> observations, in order to provide to construct color-magnitude and color-color diagrams of their resolved stellar populations. First, I select 50 regions in the spiral arm and inter-arm areas of M83, and determine the age distribution of the luminous stellar populations in each region. I developed an innovative method of star-by-star correction for internal extinction to improve stellar age and mass estimates. I compare the extinction-corrected ages of the 50 regions with those determined from several independent methods. The young stars are much more likely to be found in concentrated aggregates along spiral arms, while older stars are more dispersed. These results are consistent with a scenario where star formation is associated with the spiral arms, and stars form primarily in star clusters before dispersing on short timescales to form the field population. I address the effects of spatial resolution on the measured colors, magnitudes, and age estimates. While individual stars can occasionally show measurable differences in the colors and magnitudes, the age estimates for entire regions are only slightly affected. The same procedure is applied to nearby starbursting dwarf NGC 4214 to study the distributions of young and old stellar populations. Lastly, I describe the analysis of the HST<\italic> and Spitzer Space Telescope<\italic> observations of the extremely metal-poor dwarf galaxy (XMPG) CGCG 269-049 at a distance of 4.96 Mpc. This galaxy is one of the most metal-poor known with 12+log(O/H)=7.43. I find clear evidence for the presence of an old stellar population in CGCG~269-049, ruling out the possibility that this galaxy is forming its first generation of stars, as originally proposed for XMPGs. This comprehensive study of resolved stellar populations in three nearby galaxies provides detailed view of the current state of star formation and evolution of galaxies.
ContributorsKim, Hwihyun (Author) / Windhorst, Rogier A (Thesis advisor) / Jansen, Rolf A (Committee member) / Rhoads, James E (Committee member) / Scannapieco, Evan (Committee member) / Young, Patrick (Committee member) / Arizona State University (Publisher)
Created2012
152408-Thumbnail Image.png
Description
Quasars, the visible phenomena associated with the active accretion phase of super- massive black holes found in the centers of galaxies, represent one of the most energetic processes in the Universe. As matter falls into the central black hole, it is accelerated and collisionally heated, and the radiation emitted can

Quasars, the visible phenomena associated with the active accretion phase of super- massive black holes found in the centers of galaxies, represent one of the most energetic processes in the Universe. As matter falls into the central black hole, it is accelerated and collisionally heated, and the radiation emitted can outshine the combined light of all the stars in the host galaxy. Studies of quasar host galaxies at ultraviolet to near-infrared wavelengths are fundamentally limited by the precision with which the light from the central quasar accretion can be disentangled from the light of stars in the surrounding host galaxy. In this Dissertation, I discuss direct imaging of quasar host galaxies at redshifts z ≃ 2 and z ≃ 6 using new data obtained with the Hubble Space Telescope. I describe a new method for removing the point source flux using Markov Chain Monte Carlo parameter estimation and simultaneous modeling of the point source and host galaxy. I then discuss applications of this method to understanding the physical properties of high-redshift quasar host galaxies including their structures, luminosities, sizes, and colors, and inferred stellar population properties such as age, mass, and dust content.
ContributorsMechtley, Matt R (Author) / Windhorst, Rogier A (Thesis advisor) / Butler, Nathaniel (Committee member) / Jansen, Rolf A (Committee member) / Rhoads, James (Committee member) / Scowen, Paul (Committee member) / Arizona State University (Publisher)
Created2014
156741-Thumbnail Image.png
Description
Green pea galaxies are a class of rare, compact starburst galaxies that have powerful optical emission line [OIII]$\lambda$5007. They are the best low-redshift analogs of high-redshift (z$>$2) Lyman-alpha emitting galaxies (LAEs). They provide unique opportunities to study physical conditions in high-redshift LAEs in great detail. In this dissertation, a few

Green pea galaxies are a class of rare, compact starburst galaxies that have powerful optical emission line [OIII]$\lambda$5007. They are the best low-redshift analogs of high-redshift (z$>$2) Lyman-alpha emitting galaxies (LAEs). They provide unique opportunities to study physical conditions in high-redshift LAEs in great detail. In this dissertation, a few physical properties of green peas are investigated. The first study in the dissertation presents star formation rate (SFR) surface density, thermal pressure in HII regions, and a correlation between them for 17 green peas and 19 Lyman break analogs, which are nearby analogs of high-redshift Lyman break galaxies. This correlation is consistent with that found from the star-forming galaxies at z $\sim$ 2.5. In the second study, a new large sample of 835 green peas in the redshift range z = 0.011 -- 0.411 are assembled from Data Release 13 of the Sloan Digital Sky Survey (SDSS) with the equivalent width of the line [OIII]$\lambda$5007 $>$ 300\AA\ or the equivalent width of the line H$\beta$ $>$ 100\AA. The size of this new sample is ten times that of the original 80 star-forming green pea sample. With reliable T$_e$-based gas-phase metallicity measurements for the 835 green peas, a new empirical calibration of R23 (defined as ([OIII]$\lambda$$\lambda$4959,5007 + [OII]$\lambda$$\lambda$3726,3729)/H$\beta$) for strong line emitters is then derived. The double-value degeneracy of the metallicity is broken for galaxies with large ionization parameter (which manifests as log([OIII]$\lambda$$\lambda$4959,5007/[OII]$\lambda$$\lambda$3726,3729) $\geq$ 0.6). This calibration offers a good way to estimate metallicities for extreme emission-line galaxies and high-redshift LAEs. The third study presents stellar mass measurements and the stellar mass-metallicity relation of 828 green peas from the second study. The stellar mass covers 6 orders of magnitude in the range 10$^{5}$ -- 10$^{11}$ M$_{\odot}$, with a median value of 10$^{8.8}$ M$_{\odot}$. The stellar mass-metallicity relation of green peas is flatter and displays about 0.2 - 0.5 dex offset to lower metallicities in the range of stellar mass higher than 10$^{8}$ M$_{\odot}$ compared to the local SDSS star-forming galaxies. A significant dependence of the stellar mass-metallicity relation on star formation rate is not found in this work.
ContributorsJiang, Tianxing (Author) / Malhotra, Sangeeta (Thesis advisor) / Rhoads, James E (Committee member) / Scannapieco, Evan (Committee member) / Borthakur, Sanchayeeta (Committee member) / Jansen, Rolf A (Committee member) / Arizona State University (Publisher)
Created2018
156675-Thumbnail Image.png
Description
In the past three decades with the deployment of space-based from x-rays to infrared telescopes and operation of 8-10 m class ground based telescopes, a hand-full of regions of the sky have emerged that probe the distant universe over relatively wide fields with the aim of understanding the assembly of

In the past three decades with the deployment of space-based from x-rays to infrared telescopes and operation of 8-10 m class ground based telescopes, a hand-full of regions of the sky have emerged that probe the distant universe over relatively wide fields with the aim of understanding the assembly of apparently faint galaxies. To explore this new frontier, observations were made with the Large Binocular Cameras (LBCs) on the Large Binocular Telescope (LBT) of a well-studied deep field, GOODS-North, which has been observed by a wide range of telescopes from the radio to x-ray. I present a study of the trade-off between depth and resolution using a large number of LBT/LBC U-band and R-band imaging observations in the GOODS-N field. Having acquired over 30 hours of data (315 images with 5-6 minute exposures) for U-band and 27 hours for R-band (828 images with 2 minute exposures), multiple mosaics were generated, starting with images taken under the best atmospheric conditions (FWHM <0.8"). For subsequent mosaics, data with coarser seeing values were added in until the final, deepest mosaic included all images with FWHM <1.8". For each mosaic, object catalogs were made to compare the optimal-resolution, yet shallower image to the low-resolution but deeper image. For the brightest galaxies within the GOODS-N field, structure and clumpy features within the galaxies are more prominent in the optimal-resolution image compared to the deeper mosaics. I conclude that for studies of brighter galaxies and features within them, the optimal-resolution image should be used. However, to fully explore and understand the faintest objects, the deeper imaging with lower resolution are also required. For the 220 and 360 brightest galaxies in the U-band and R-band images respectively, there is only a marginal difference between the optimal-resolution and lower-resolution light-profiles and their integrated total fluxes. This helps constrain how much flux can be missed in galaxy outskirts, which is important for studies of Extragalactic Background Light. Finally, I also comment on a collection of galaxies in the field with tidal tails and streams, diffuse plumes, and bridges.
ContributorsAshcraft, Teresa Ann (Author) / Windhorst, Rogier A (Thesis advisor) / Borthakur, Sanchayeeta (Committee member) / Jansen, Rolf A (Committee member) / Scowen, Paul (Committee member) / Groppi, Chris (Committee member) / Arizona State University (Publisher)
Created2018
133352-Thumbnail Image.png
Description
The inherent risk in testing drugs has been hotly debated since the government first started regulating the drug industry in the early 1900s. Who can assume the risks associated with trying new pharmaceuticals is unclear when looked at through society's lens. In the mid twentieth century, the US Food and

The inherent risk in testing drugs has been hotly debated since the government first started regulating the drug industry in the early 1900s. Who can assume the risks associated with trying new pharmaceuticals is unclear when looked at through society's lens. In the mid twentieth century, the US Food and Drug Administration (FDA) published several guidance documents encouraging researchers to exclude women from early clinical drug research. The motivation to publish those documents and the subsequent guidance documents in which the FDA and other regulatory offices established their standpoints on women in drug research may have been connected to current events at the time. The problem of whether women should be involved in drug research is a question of who can assume risk and who is responsible for disseminating what specific kinds of information. The problem tends to be framed as one that juxtaposes the health of women and fetuses and sets their health as in opposition. That opposition, coupled with the inherent uncertainty in testing drugs, provides for a complex set of issues surrounding consent and access to information.
ContributorsMeek, Caroline Jane (Author) / Maienschein, Jane (Thesis director) / Brian, Jennifer (Committee member) / School of Life Sciences (Contributor) / Sanford School of Social and Family Dynamics (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
131502-Thumbnail Image.png
Description
Social-emotional learning (SEL) methods are beginning to receive global attention in primary school education, yet the dominant emphasis on implementing these curricula is in high-income, urbanized areas. Consequently, the unique features of developing and integrating such methods in middle- or low-income rural areas are unclear. Past studies suggest that students

Social-emotional learning (SEL) methods are beginning to receive global attention in primary school education, yet the dominant emphasis on implementing these curricula is in high-income, urbanized areas. Consequently, the unique features of developing and integrating such methods in middle- or low-income rural areas are unclear. Past studies suggest that students exposed to SEL programs show an increase in academic performance, improved ability to cope with stress, and better attitudes about themselves, others, and school, but these curricula are designed with an urban focus. The purpose of this study was to conduct a needs-based analysis to investigate components specific to a SEL curriculum contextualized to rural primary schools. A promising organization committed to rural educational development is Barefoot College, located in Tilonia, Rajasthan, India. In partnership with Barefoot, we designed an ethnographic study to identify and describe what teachers and school leaders consider the highest needs related to their students' social and emotional education. To do so, we interviewed 14 teachers and school leaders individually or in a focus group to explore their present understanding of “social-emotional learning” and the perception of their students’ social and emotional intelligence. Analysis of this data uncovered common themes among classroom behaviors and prevalent opportunities to address social and emotional well-being among students. These themes translated into the three overarching topics and eight sub-topics explored throughout the curriculum, and these opportunities guided the creation of the 21 modules within it. Through a design-based research methodology, we developed a 40-hour curriculum by implementing its various modules within seven Barefoot classrooms alongside continuous reiteration based on teacher feedback and participant observation. Through this process, we found that student engagement increased during contextualized SEL lessons as opposed to traditional methods. In addition, we found that teachers and students preferred and performed better with an activities-based approach. These findings suggest that rural educators must employ particular teaching strategies when addressing SEL, including localized content and an experiential-learning approach. Teachers reported that as their approach to SEL shifted, they began to unlock the potential to build self-aware, globally-minded students. This study concludes that social and emotional education cannot be treated in a generalized manner, as curriculum development is central to the teaching-learning process.
ContributorsBucker, Delaney Sue (Author) / Carrese, Susan (Thesis director) / Barab, Sasha (Committee member) / School of Life Sciences (Contributor, Contributor) / School of Civic & Economic Thought and Leadership (Contributor) / School of International Letters and Cultures (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
131507-Thumbnail Image.png
Description
As of 2019, 30 US states have adopted abortion-specific informed consent laws that require state health departments to develop and disseminate written informational materials to patients seeking an abortion. Abortion is the only medical procedure for which states dictate the content of informed consent counseling. State abortion counseling materials have

As of 2019, 30 US states have adopted abortion-specific informed consent laws that require state health departments to develop and disseminate written informational materials to patients seeking an abortion. Abortion is the only medical procedure for which states dictate the content of informed consent counseling. State abortion counseling materials have been criticized for containing inaccurate and misleading information, but overall, informed consent laws for abortion do not often receive national attention. The objective of this project was to determine the importance of informed consent laws to achieving the larger goal of dismantling the right to abortion. I found that informed consent counseling materials in most states contain a full timeline of fetal development, along with information about the risks of abortion, the risks of childbirth, and alternatives to abortion. In addition, informed consent laws for abortion are based on model legislation called the “Women’s Right to Know Act” developed by Americans United for Life (AUL). AUL calls itself the legal architect of the pro-life movement and works to pass laws at the state level that incrementally restrict abortion access so that it gradually becomes more difficult to exercise the right to abortion established by Roe v. Wade. The “Women’s Right to Know Act” is part of a larger package of model legislation called the “Women’s Protection Project,” a cluster of laws that place restrictions on abortion providers, purportedly to protect women, but actually to decrease abortion access. “Women’s Right to Know” counseling laws do not directly deny access to abortion, but they do reinforce key ideas important to the anti-abortion movement, like the concept of fetal personhood, distrust in medical professionals, the belief that pregnant people cannot be fully autonomous individuals, and the belief that abortion is not an ordinary medical procedure and requires special government oversight. “Women’s Right to Know” laws use the language of informed consent and the purported goal of protecting women to legitimize those ideas, and in doing so, they significantly undermine the right to abortion. The threat to abortion rights posed by laws like the “Women’s Right to Know” laws indicates the need to reevaluate and strengthen our ethical defense of the right to abortion.
ContributorsVenkatraman, Richa (Author) / Maienschein, Jane (Thesis director) / Brian, Jennifer (Thesis director) / Abboud, Carolina (Committee member) / Historical, Philosophical & Religious Studies (Contributor) / School of Life Sciences (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
131521-Thumbnail Image.png
Description
Turbidity is a known problem for UV water treatment systems as suspended particles can shield contaminants from the UV radiation. UV systems that utilize a reflective radiation chamber may be able to decrease the impact of turbidity on the efficacy of the system. The purpose of this study was to

Turbidity is a known problem for UV water treatment systems as suspended particles can shield contaminants from the UV radiation. UV systems that utilize a reflective radiation chamber may be able to decrease the impact of turbidity on the efficacy of the system. The purpose of this study was to determine how kaolin clay and gram flour turbidity affects inactivation of Escherichia coli (E. coli) when using a UV system with a reflective chamber. Both sources of turbidity were shown to reduce the inactivation of E. coli with increasing concentrations. Overall, it was shown that increasing kaolin clay turbidity had a consistent effect on reducing UV inactivation across UV doses. Log inactivation was reduced by 1.48 log for the low UV dose and it was reduced by at least 1.31 log for the low UV dose. Gram flour had a similar effect to the clay at the lower UV dose, reducing log inactivation by 1.58 log. At the high UV dose, there was no change in UV inactivation with an increase in turbidity. In conclusion, turbidity has a significant impact on the efficacy of UV disinfection. Therefore, removing turbidity from water is an essential process to enhance UV efficiency for the disinfection of microbial pathogens.
ContributorsMalladi, Rohith (Author) / Abbaszadegan, Morteza (Thesis director) / Alum, Absar (Committee member) / Fox, Peter (Committee member) / School of Human Evolution & Social Change (Contributor) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
131526-Thumbnail Image.png
Description
Aquatic macroinvertebrates are important for many ecological processes within river ecosystems and, as a result, their abundance and diversity are considered indicators of water quality and ecosystem health. Macroinvertebrates can be classified into functional feeding groups (FFG) based on morphological-behavioral adaptations. FFG ratios can shift due to changes

Aquatic macroinvertebrates are important for many ecological processes within river ecosystems and, as a result, their abundance and diversity are considered indicators of water quality and ecosystem health. Macroinvertebrates can be classified into functional feeding groups (FFG) based on morphological-behavioral adaptations. FFG ratios can shift due to changes in normal disturbance patterns, such as changes in precipitation, and from human impact. Due to their increased sensitivity to environmental changes, it has become more important to protect and monitor aquatic and riparian communities in arid regions as climate change continues to intensify. Therefore, the diversity and richness of macroinvertebrate FFGs before and after monsoon and winter storm seasons were analyzed to determine the effect of flow-related disturbances. Ecosystem size was also considered, as watershed area has been shown to affect macroinvertebrate diversity. There was no strong support for flow-related disturbance or ecosystem size on macroinvertebrate diversity and richness. This may indicate a need to explore other parameters of macroinvertebrate community assembly. Establishing how disturbance affects aquatic macroinvertebrate communities will provide a key understanding as to what the stream communities will look like in the future, as anthropogenic impacts continue to affect more vulnerable ecosystems.
ContributorsSainz, Ruby (Author) / Sabo, John (Thesis director) / Grimm, Nancy (Committee member) / Lupoli, Christina (Committee member) / School of Life Sciences (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
131531-Thumbnail Image.png
Description
This study evaluates medical pluralism among 1.5 generation Indian American immigrants. 1.5 generation Indian Americans (N=16) were surveyed regarding their engagement in complementary and alternative medical systems (CAM), how immigration affected that, and reasons for and for not continuing the use of CAM. Results indicated most 1.5 Indian immigrants currently

This study evaluates medical pluralism among 1.5 generation Indian American immigrants. 1.5 generation Indian Americans (N=16) were surveyed regarding their engagement in complementary and alternative medical systems (CAM), how immigration affected that, and reasons for and for not continuing the use of CAM. Results indicated most 1.5 Indian immigrants currently engage in CAM, given that their parents also engage in CAM. The top reasons respondents indicated continued engagement in CAM was that it has no side effects and is preventative. Reasons for not practicing CAM included feeling out of place, not living with parents or not believing in CAM. After immigration, most participants decreased or stopped their engagement in CAM. More women than men continued to practice CAM after immigration. From the results, it was concluded that CAM is still important to 1.5 generation Indian immigrants.
ContributorsMurugesh, Subhiksha (Author) / Stotts, Rhian (Thesis director) / Mubayi, Anuj (Committee member) / School of Human Evolution & Social Change (Contributor) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05