Matching Items (11)

158395-Thumbnail Image.png

Characterization of the Role of Necroptosis for Oncolytic Vaccinia Efficacy

Description

Since the molecular biology revolution in the 1980s, ease of gene editing had led to the resurgence of Oncolytic Virotherapy. Countless viruses have been engineered yet only three are approved

Since the molecular biology revolution in the 1980s, ease of gene editing had led to the resurgence of Oncolytic Virotherapy. Countless viruses have been engineered yet only three are approved for clinical use worldwide, with only one being approved by the U.S Food and Drug Administration (FDA). Vaccinia virus (VACV) has a large genome, contains many immune evasion genes and has been thoroughly studied, making it a popular candidate for an oncolytic platform. VACV mutants with deletions in the E3 immune evasion protein have been shown to have oncolytic efficacy but the mechanism of tumor selectivity has not been fully elucidated. These mutants have been shown to be regulated by the necroptosis pathway, a pathway that has been shown to be deficient in certain cancers. Using a pan-cancer screening method that combines dye exclusion assays, western blot analysis, and viral growth curve, the role of necroptosis in regulating VACV replication and oncolytic efficacy in cancer was further characterized. Results demonstrate a preliminary correlation between necroptosis, viral replication, and oncolytic efficacy. This correlation is clearest in breast cancer and melanomas yet may apply to other cancer subgroups. This data was also used to guide the development of a receptor-interacting protein kinase 3 (RIP3) matched pair mouse model in the E0771 mouse breast cancer line which can be used to further study the role of necroptosis and oncolytic efficacy in vivo. Understanding the contribution necroptosis plays in oncolytic efficacy can guide to design enhance the design of clinical trials to test VACV E3L mutants and may lead to better efficacy in humans and an improvement in clinical oncology.

Contributors

Agent

Created

Date Created
  • 2020

149931-Thumbnail Image.png

A novel, low-cost viral load diagnostic for HIV-1 and assessing barriers to adoption of technology in Tanzania

Description

HIV/AIDS is the sixth leading cause of death worldwide and the leading cause of death among women of reproductive age living in low-income countries. Clinicians in industrialized nations monitor the

HIV/AIDS is the sixth leading cause of death worldwide and the leading cause of death among women of reproductive age living in low-income countries. Clinicians in industrialized nations monitor the efficacy of antiretroviral drugs and HIV disease progression with the HIV-1 viral load assay, which measures the copy number of HIV-1 RNA in blood. However, viral load assays are not widely available in sub-Saharan Africa and cost between 50-$139 USD per test on average where available. To address this problem, a mixed-methods approach was undertaken to design a novel and inexpensive viral load diagnostic for HIV-1 and to evaluate barriers to its adoption in a developing country. The assay was produced based on loop-mediated isothermal amplification (LAMP). Blood samples from twenty-one individuals were spiked with varying concentrations of HIV-1 RNA to evaluate the sensitivity and specificity of LAMP. Under isothermal conditions, LAMP was performed with an initial reverse-transcription step (RT-LAMP) and primers designed for HIV-1 subtype C. Each reaction generated up to a few billion copies of target DNA within an hour. Presence of target was detected through naked-eye observation of a fluorescent indicator and verified by DNA gel electrophoresis and real-time fluorescence. The assay successfully detected the presence of HIV in samples with a broad range of HIV RNA concentration, from over 120,000 copies/reaction to 120 copies/reaction. In order to better understand barriers to adoption of LAMP in developing countries, a feasibility study was undertaken in Tanzania, a low-income country facing significant problems in healthcare. Medical professionals in Northern Tanzania were surveyed for feedback regarding perspectives of current HIV assays, patient treatment strategies, availability of treatment, treatment priorities, HIV transmission, and barriers to adoption of the HIV-1 LAMP assay. The majority of medical providers surveyed indicated that the proposed LAMP assay is too expensive for their patient populations. Significant gender differences were observed in response to some survey questions. Female medical providers were more likely to cite stigma as a source problem of the HIV epidemic than male medical providers while males were more likely to cite lack of education as a source problem than female medical providers.

Contributors

Agent

Created

Date Created
  • 2011

157800-Thumbnail Image.png

Regulation and Function of IL-36γ in Genital HSV-2 Infection and Disease Pathogenesis

Description

An estimated 267 million women worldwide are HSV-2 seropositive, including roughly 20% of reproductive-aged American women. HSV-2 is a neurotropic virus that establishes a persistent, life-long infection that increases risk

An estimated 267 million women worldwide are HSV-2 seropositive, including roughly 20% of reproductive-aged American women. HSV-2 is a neurotropic virus that establishes a persistent, life-long infection that increases risk for STI acquisition in individuals. The vaginal epithelium represents a critical first line of defense against infection, and during acute infection, underlying immune mechanisms in the epithelium may be critical to protect against disease pathogenesis. The recently identified pro-inflammatory cytokine IL-36gamma has been shown to be expressed at mucosal epithelia, including the female reproductive tract (FRT) and may be an important factor in host defense. Although IL-36gamma has been shown to be induced in the FRT after exposure to microbial products, the contributions of IL-36gamma to host defense mechanisms in response to this clinically relevant STI pathogen are not well understood. This dissertation describes the regulation of IL-36gamma in the FRT and explores its contribution to the host response against genital HSV-2 infection.

To test the hypothesis that IL-36gamma is a key regulator of mucosal inflammation and immunity in the FRT, hormonal regulation of IL-36gamma in the FRT was investigated using estrogen- and progesterone-conditioned mice. From this preliminary study, it was shown that progesterone dampens IL36G expression relative to estrogen and may potentially increase susceptibility to infection. Next, the impact of IL-36gamma treatment on HSV-2 infection and replication in human 3-D vaginal epithelial cells was explored. In parallel, the impact of intravaginal IL-36gamma delivery on HSV-2 disease pathogenesis was evaluated using a lethal murine challenge model. IL-36gamma pre-treatment significantly limited HSV-2 replication in vitro and in vivo and was associated with transient neutrophil infiltration that corresponded with decreased disease severity and increased survival in mice. Last, the requirement for IL-36gamma in host defense was investigated utilizing IL-36gamma-/- mice in a lethal HSV-2 murine challenge model. Following infection, IL-36gamma-/- mice exhibited significantly impaired neutrophil recruitment, decreased overall survival time, and significantly increased viral neuroinvasion relative to wild type mice. Collectively, these data indicate that IL-36gamma is a crucial regulator of HSV-2-induced neutrophil infiltration and appears to function in a previously uncharacterized manner to limit viral neuroinvasion in genital HSV-2 disease pathogenesis.

Contributors

Agent

Created

Date Created
  • 2019

155004-Thumbnail Image.png

Regulation of Vaccinia virus induced programmed necrosis through Z-form nucleic acid binding proteins

Description

The interaction between a virus and its host is a constant competition for supremacy. Both the virus and the host immune system constantly evolve mechanisms to circumvent one another. Vaccinia

The interaction between a virus and its host is a constant competition for supremacy. Both the virus and the host immune system constantly evolve mechanisms to circumvent one another. Vaccinia virus (VACV) infections are a prime example of this. VACV contains a highly conserved innate immune evasion gene, E3L, which encodes the E3 protein composed of a Z-NA-binding domain (Z-NA BD) in the N terminus and a highly characterized dsRNA binding domain in the C-terminus. Both domains of E3 have been found to be essential for the inhibition of antiviral states initiated by host type 1 IFNs. However, the mechanism by which the Z-NA-BD of E3’s N-terminus confers IFN resistance has yet to be established. This is partially due to conflicting evidence showing that the Z-NA-BD is dispensable in most cell culture systems, yet essential for pathogenicity in mice. Recently it has been demonstrated that programmed necrosis is an alternative form of cell death that can be initiated by viral infections as part of the host’s innate immune response to control infection. The work presented here reveals that VACV has developed a mechanism to inhibit programmed necrosis. This inhibition occurs through utilizing E3’s N-terminus to prevent the initiation of programmed necrosis involving the host-encoded cellular proteins RIP3 and Z-NA-binding protein DAI. The inhibition of programmed necrosis has been shown to involve regions of both the viral and host proteins responsible for Z-NA binding through in vivo studies demonstrating that deletions of the Z-NA-BD in E3 correspond to an attenuation of pathogenicity in wild type mice that is restored in RIP3- and DAI-deficient models. Together these findings provide novel insight into the elusive function of the Z-NA-binding domain of the N-terminus and its role in preventing host recognition of viral infections. Furthermore, it is demonstrated that a unique mechanism for resisting virally induced programmed necrosis exists. This mechanism, specific to Z-NA binding, involves the inhibition of a DAI dependent form of programmed necrosis possibly by preventing host recognition of viral infections, and hints at the possible biological role of Z-NA in regulating viral infections.

Contributors

Agent

Created

Date Created
  • 2016

153563-Thumbnail Image.png

Identification and characterization of functional biomolecules by in vitro selection

Description

In vitro selection technologies allow for the identification of novel biomolecules endowed with desired functions. Successful selection methodologies share the same fundamental requirements. First, they must establish a strong link

In vitro selection technologies allow for the identification of novel biomolecules endowed with desired functions. Successful selection methodologies share the same fundamental requirements. First, they must establish a strong link between the enzymatic function being selected (phenotype) and the genetic information responsible for the function (genotype). Second, they must enable partitioning of active from inactive variants, often capturing only a small number of positive hits from a large population of variants. These principles have been applied to the selection of natural, modified, and even unnatural nucleic acids, peptides, and proteins. The ability to select for and characterize new functional molecules has significant implications for all aspects of research spanning the basic understanding of biomolecules to the development of new therapeutics. Presented here are four projects that highlight the ability to select for and characterize functional biomolecules through in vitro selection.

Chapter one outlines the development of a new characterization tool for in vitro selected binding peptides. The approach enables rapid screening of peptide candidates in small sample volumes using cell-free translated peptides. This strategy has the potential to accelerate the pace of peptide characterization and help advance the development of peptide-based affinity reagents.

Chapter two details an in vitro selection strategy for searching entire genomes for RNA sequences that enhance cap-independent initiation of translation. A pool of sequences derived from the human genome was enriched for members that function to enhance the translation of a downstream coding region. Thousands of translation enhancing elements from the human genome are identified and the function of a subset is validated in vitro and in cells.

Chapter three discusses the characterization of a translation enhancing element that promotes rapid and high transgene expression in mammalian cells. Using this ribonucleic acid sequence, a series of full length human proteins is expressed in a matter of only hours. This advance provides a versatile platform for protein synthesis and is espcially useful in situations where prokaryotic and cell-free systems fail to produce protein or when post-translationally modified protein is essential for biological analysis.

Chapter four outlines a new selection strategy for the identification of novel polymerases using emulsion droplet microfluidics technology. With the aid of a fluorescence-based activity assay, libraries of polymerase variants are assayed in picoliter sized droplets to select for variants with improved function. Using this strategy a variant of the 9°N DNA polymerase is identified that displays an enhanced ability to synthesize threose nucleic acid polymers.

Contributors

Agent

Created

Date Created
  • 2015

151641-Thumbnail Image.png

Characterization of host responses to Vaccinia virus infection

Description

Vaccinia virus (VACV) is the current vaccine for the highly infectious smallpox disease. Since the eradication of smallpox, VACV has been developed extensively as a heterologous vaccine vector for several

Vaccinia virus (VACV) is the current vaccine for the highly infectious smallpox disease. Since the eradication of smallpox, VACV has been developed extensively as a heterologous vaccine vector for several pathogens. However, due to the complications associated with this replication competent virus, the safety and efficacy of VACV vaccine vector has been reevaluated. To evaluate the safety and efficacy of VACV, we study the interactions between VACV and the host innate immune system, especially the type I interferon (IFN) signaling pathways. In this work, we evaluated the role of protein kinase R (PKR) and Adenosine Deaminase Acting on RNA 1(ADAR1), which are induced by IFN, in VACV infection. We found that PKR is necessary but is not sufficient to activate interferon regulatory factor 3 (IRF3) in the induction of type I IFN; and the activation of the stress-activated protein kinase/ c-Jun NH2-terminal kinase is required for the PKR-dependent activation of IRF3 during VACV infection. Even though PKR was found to have an antiviral effect in VACV, ADAR1 was found to have a pro-viral effect by destabilizing double stranded RNA (dsRNA), rescuing VACVΔE3L, VACV deleted of the virulence factor E3L, when provided in trans. With the lessons we learned from VACV and host cells interaction, we have developed and evaluated a safe replication-competent VACV vaccine vector for HIV. Our preliminary results indicate that our VACV vaccine vector can still induce the IFN pathway while maintaining the ability to replicate and to express the HIV antigen efficiently. This suggests that this VACV vector can be used as a safe and efficient vaccine vector for HIV.

Contributors

Agent

Created

Date Created
  • 2013

150387-Thumbnail Image.png

Lessons from vaccinia virus post-exposure prophylaxis: insights into control of diseases and epidemics

Description

The concept of vaccination dates back further than Edward Jenner's first vaccine using cowpox pustules to confer immunity against smallpox in 1796. Nevertheless, it was Jenner's success that gave vaccines

The concept of vaccination dates back further than Edward Jenner's first vaccine using cowpox pustules to confer immunity against smallpox in 1796. Nevertheless, it was Jenner's success that gave vaccines their name and made vaccinia virus (VACV) of particular interest. More than 200 years later there is still the need to understand vaccination from vaccine design to prediction of vaccine efficacy using mathematical models. Post-exposure vaccination with VACV has been suggested to be effective if administered within four days of smallpox exposure although this has not been definitively studied in humans. The first and second chapters analyze post-exposure prophylaxis of VACV in an animal model using v50ΔB13RMγ, a recombinant VACV expressing murine interferon gamma (IFN-γ) also known as type II IFN. While untreated animals infected with wild type VACV die by 10 days post-infection (dpi), animals treated with v50ΔB13RMγ 1 dpi had decreased morbidity and 100% survival. Despite these differences, the viral load was similar in both groups suggesting that v50ΔB13RMγ acts as an immunoregulator rather than as an antiviral. One of the main characteristics of VACV is its resistance to type I IFN, an effect primarily mediated by the E3L protein, which has a Z-DNA binding domain and a double-stranded RNA (dsRNA) binding domain. In the third chapter a VACV that independently expresses both domains of E3L was engineered and compared to wild type in cells in culture. The dual expression virus was unable to replicate in the JC murine cell line where both domains are needed together for replication. Moreover, phosphorylation of the dsRNA dependent protein kinase (PKR) was observed at late times post-infection which indicates that both domains need to be linked together in order to block the IFN response. Because smallpox has already been eradicated, the utility of mathematical modeling as a tool for predicting disease spread and vaccine efficacy was explored in the last chapter using dengue as a disease model. Current modeling approaches were reviewed and the 2000-2001 dengue outbreak in a Peruvian region was analyzed. This last section highlights the importance of interdisciplinary collaboration and how it benefits research on infectious diseases.

Contributors

Agent

Created

Date Created
  • 2011

154855-Thumbnail Image.png

Searching for an HIV vaccine: a heterologous prime-boost system using replicating vaccinia virus and plant-produced virus-like particles

Description

The HIV-1 pandemic continues to cause millions of new infections and AIDS-related deaths each year, and a majority of these occur in regions of the world with limited access to

The HIV-1 pandemic continues to cause millions of new infections and AIDS-related deaths each year, and a majority of these occur in regions of the world with limited access to antiretroviral therapy. Therefore, an HIV-1 vaccine is still desperately needed. The most successful HIV-1 clinical trial to date used a non-replicating canarypox viral vector and protein boosting, yet its modest efficacy left room for improvement. Efforts to derive novel vectors which can be both safe and immunogenic, have spawned a new era of live, viral vectors. One such vaccinia virus vector, NYVAC-KC, was specifically designed to replicate in humans and had several immune modulators deleted to improve immunogenicity and reduce pathogenicity. Two NYVAC-KC vectors were generated: one expressing the Gag capsid, and one with deconstructed-gp41 (dgp41), which contains an important neutralizing antibody target, the membrane proximal external region (MPER). These vectors were combined with HIV-1 Gag/dgp41 virus-like particles (VLPs) produced in the tobacco-relative Nicotiana benthamiana. Different plant expression vectors were compared in an effort to improve yield. A Geminivirus-based vector was shown to increase the amount of MPER present in VLPs, thus potentially enhancing immunogenicity. Furthermore, these VLPs were shown to interact with the innate immune system through Toll-like receptor (TLR) signaling, which activated antigen presenting cells to induce a Th2-biased response in a TLR-dependent manner. Furthermore, expression of Gag and dgp41 in NYVAC-KC vectors resulted in activation of antiviral signaling pathways reliant on TBK1/IRF3, which necessitated the use of higher doses in mice to match the immunogenicity of wild-type viral vectors. VLPs and NYVAC-KC vectors were tested in mice, ultimately showing that the best antibody and Gag-specific T cell responses were generated when both components were administered simultaneously. Thus, plant-produced VLPs and poxvirus vectors represent a highly immunogenic HIV-1 vaccine candidate that warrants further study.

Contributors

Agent

Created

Date Created
  • 2016

156619-Thumbnail Image.png

To Explode or to Implode: How Cells Decide Between Apoptosis and Necroptosis Following Viral or Chemical Stress

Description

Cell death is a powerful tool through which organisms can inhibit the spread of viruses by preventing their replication. In this work, I used viral and chemical stressors to elucidate

Cell death is a powerful tool through which organisms can inhibit the spread of viruses by preventing their replication. In this work, I used viral and chemical stressors to elucidate the mechanisms by which one anti-viral system might be activated over another, focusing on the programmable death pathway necroptosis and Protein Kinase R (PKR). PKR can detect viral dsRNA and trigger antiviral effects such as cessation of translation and induction of programmed death. Necroptosis is a rapid cellular death that can be induced via sensors such as DNA-dependent activator of IFN-regulatory factors (DAI), also known as Z-DNA-binding protein 1 (ZBP1). DAI contains a Z-form nucleic acid (ZNA) binding domain. E3, the primary vaccinia virus (VACV) interferon resistance protein, contains a similar domain in its amino terminus. We have previously reported this domain to be necessary for the inhibition of both PKR activation and DAI/ZBP1-mediated necroptosis.

Monkeypox virus is a reemerging human pathogen. Despite a partial amino-terminal deletion in its E3 homolog, it does not activate PKR. In chapter 2, I show that MPXV produces less dsRNA than VACV, which could explain how the virus avoids activating PKR.

The amino-terminus of vaccinia is associated with ZNA binding, inhibition of PKR, and inhibition of necroptosis. To determine the roles of PKR inhibition and ZNA binding in necroptosis inhibition, I characterized the VACV mutants Za(ADAR1)-E3, which binds ZNA but does not inhibit PKR, and E3:Y48A, which cannot bind ZNA. I found that while Za(ADAR1)-E3 fails to induce necroptosis, E3:Y48A does not activate PKR but does induce necroptosis. This suggests that Z-form nucleic acid binding is not necessary for vaccinia E3-mediated inhibition of PKR, nor is the inhibition of PKR sufficient for the inhibition of necroptosis.

Finally, all known ZNA-binding proteins have immune functions and home to stress granules. I asked if stress granule formation alone could lead to necroptosis. I found that in L929 cells sodium arsenite, a known inducer of stress granules, could trigger DAI-dependent necroptosis. This suggests that DAI/ZBP1 is not necessarily a sensor of viral ligands but perhaps is a sensor of stress signals brought about by infection.

Contributors

Agent

Created

Date Created
  • 2018

155948-Thumbnail Image.png

T-Cell Immunogenicity and Dysfunction in Cancer and Viral Diseases

Description

CD8+ T-lymphocytes (CTLs) are central to the immunologic control of infections and are currently at the forefront of strategies that enhance immune based treatment of a variety of tumors. Effective

CD8+ T-lymphocytes (CTLs) are central to the immunologic control of infections and are currently at the forefront of strategies that enhance immune based treatment of a variety of tumors. Effective T-cell based vaccines and immunotherapies fundamentally rely on the interaction of CTLs with peptide-human leukocyte antigen class I (HLA-I) complexes on the infected/malignant cell surface. However, how CTLs are able to respond to antigenic peptides with high specificity is largely unknown. Also unknown, are the different mechanisms underlying tumor immune evasion from CTL-mediated cytotoxicity. In this dissertation, I investigate the immunogenicity and dysfunction of CTLs for the development of novel T-cell therapies. Project 1 explores the biochemical hallmarks associated with HLA-I binding peptides that result in a CTL-immune response. The results reveal amino acid hydrophobicity of T-cell receptor (TCR) contact residues within immunogenic CTL-epitopes as a critical parameter for CTL-self
onself discrimination. Project 2 develops a bioinformatic and experimental methodology for the identification of CTL-epitopes from low frequency T-cells against tumor antigens and chronic viruses. This methodology is employed in Project 3 to identify novel immunogenic CTL-epitopes from human papillomavirus (HPV)-associated head and neck cancer patients. In Project 3, I further study the mechanisms of HPV-specific T-cell dysfunction, and I demonstrate that combination inhibition of Indoleamine 2, 3-dioxygenase (IDO-1) and programmed cell death protein (PD-1) can be a potential immunotherapy against HPV+ head and neck cancers. Lastly, in Project 4, I develop a single-cell assay for high-throughput identification of antigens targeted by CTLs from whole pathogenome libraries. Thus, this dissertation contributes to fundamental T-cell immunobiology by identifying rules of T-cell immunogenicity and dysfunction, as well as to translational immunology by identifying novel CTL-epitopes, and therapeutic targets for T-cell immunotherapy.

Contributors

Agent

Created

Date Created
  • 2017