Matching Items (70)
Description

Many nanotechnology-related principles can be demonstrated in a way that is understandable for elementary school-aged children through at-home activity videos. As a part of a National Science Foundation funded grant, Dr. Qing Hua Wang’s research group at Arizona State University developed a nanotechnology-related activity website, Nano@Home, for students. In conjunction

Many nanotechnology-related principles can be demonstrated in a way that is understandable for elementary school-aged children through at-home activity videos. As a part of a National Science Foundation funded grant, Dr. Qing Hua Wang’s research group at Arizona State University developed a nanotechnology-related activity website, Nano@Home, for students. In conjunction with ASU’s virtual Open Door 2021, this creative project aimed to create activity videos based on the Nano@Home website to make the activities more interactive for students.

ContributorsOliver, Ruth Kaylyn (Author) / Wang, Qing Hua (Thesis director) / Krause, Stephen (Committee member) / Materials Science and Engineering Program (Contributor, Contributor) / Watts College of Public Service & Community Solut (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
148001-Thumbnail Image.png
Description

High-entropy alloys possessing mechanical, chemical, and electrical properties that far exceed those of conventional alloys have the potential to make a significant impact on many areas of engineering. Identifying element combinations and configurations to form these alloys, however, is a difficult, time-consuming, computationally intensive task. Machine learning has revolutionized many

High-entropy alloys possessing mechanical, chemical, and electrical properties that far exceed those of conventional alloys have the potential to make a significant impact on many areas of engineering. Identifying element combinations and configurations to form these alloys, however, is a difficult, time-consuming, computationally intensive task. Machine learning has revolutionized many different fields due to its ability to generalize well to different problems and produce computationally efficient, accurate predictions regarding the system of interest. In this thesis, we demonstrate the effectiveness of machine learning models applied to toy cases representative of simplified physics that are relevant to high-entropy alloy simulation. We show these models are effective at learning nonlinear dynamics for single and multi-particle cases and that more work is needed to accurately represent complex cases in which the system dynamics are chaotic. This thesis serves as a demonstration of the potential benefits of machine learning applied to high-entropy alloy simulations to generate fast, accurate predictions of nonlinear dynamics.

ContributorsDaly, John H (Author) / Ren, Yi (Thesis director) / Zhuang, Houlong (Committee member) / Mechanical and Aerospace Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
132513-Thumbnail Image.png
Description
In this research, the effect of the crystal structure of the parent phase on the morphology of nanoporous gold is explored. Specifically, Cu-Au alloys are studied. For this experiment, Cu0.75Au0.25 is heat treated to achieve an ordered phase Cu3Au and a disordered random solid solution, face centered cubic, Cu0.75Au0.25 phase,

In this research, the effect of the crystal structure of the parent phase on the morphology of nanoporous gold is explored. Specifically, Cu-Au alloys are studied. For this experiment, Cu0.75Au0.25 is heat treated to achieve an ordered phase Cu3Au and a disordered random solid solution, face centered cubic, Cu0.75Au0.25 phase, which are then dealloyed to form nanoporous gold (NPG). Using a morphology digital image analysis software called AQUAMI, SEM images of the NPG morphology were characterized to collect data on the ligament length, ligament diameter, porosity size, etc. of the samples. It was determined that the NPG formed from the ordered parent phase had an average ligament diameter that was 10 nm larger than the NPG formed from the disordered parent phase. This may be due to the ordered crystal structure allowing for faster gold diffusion and coarsening resulting in an increased average ligament size. Further future work is needed in order to obtain further evidence to support this hypothesis.
ContributorsTse, Ariana Yusof (Author) / Sieradzki, Karl (Thesis director) / Wang, Qing Hua (Committee member) / Materials Science and Engineering Program (Contributor) / Walter Cronkite School of Journalism & Mass Comm (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
132272-Thumbnail Image.png
Description
The development of stab-resistant Kevlar armor has been an ongoing field of research
since the late 1990s, with the ultimate goal of improving the multi-threat capabilities of
traditional soft-body armor while significantly improving its protective efficiency - the amount
of layers of armor material required to defeat threats. To create a novel, superior

The development of stab-resistant Kevlar armor has been an ongoing field of research
since the late 1990s, with the ultimate goal of improving the multi-threat capabilities of
traditional soft-body armor while significantly improving its protective efficiency - the amount
of layers of armor material required to defeat threats. To create a novel, superior materials
system to reinforce Kevlar armor for the Norica Capstone project, this thesis set out to
synthesize, recover, and characterize zinc oxide nanowire colloids.

The materials synthesized were successfully utilized in the wider Capstone effort to
dramatically enhance the protective abilities of Kevlar, while the data obtained on the 14
hydrothermal synthesis attempts and numerous challenges at recovery provided critical
information on the synthesis parameters involved in the reliable, scalable mass production of the
nanomaterial additive. Additionally, recovery was unconventionally facilitated in the absence of
a vacuum filtration apparatus with nanoscale filters by intentionally inducing electrostatic
agglomeration of the nanowires during standard gravity filtration. The subsequent application of
these nanowires constituted a pioneering use in the production of nanowire-reinforced
STF-based Kevlar coatings, and support the future development and, ultimately, the
commercialization of lighter and more-protective soft armor systems.
ContributorsDurso, Michael Nathan (Author) / Tongay, Sefaattin (Thesis director) / Zhuang, Houlong (Committee member) / Materials Science and Engineering Program (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
131569-Thumbnail Image.png
Description
Heavy metals such as selenium can be especially important to limit because they can cause serious health problems even at relatively low concentrations. In an effort to selectively remove selenium from solution, a PAABA (poly(aniline-co-p-aminobenzoic acid) conductive copolymer was synthesized in a selenic acid solution, and its ability to remove

Heavy metals such as selenium can be especially important to limit because they can cause serious health problems even at relatively low concentrations. In an effort to selectively remove selenium from solution, a PAABA (poly(aniline-co-p-aminobenzoic acid) conductive copolymer was synthesized in a selenic acid solution, and its ability to remove selenium was studied. Analysis of the Raman spectra confirmed the hypothesized formation of PAABA polymer. Constant voltage cycles showed success in precipitating the selenium out of solution via electroreduction, and ICP-MS confirmed the reduction of selenium concentrated in solution. These results indicate the PAABA synthesized in selenic acid shows promise for selective water treatment.
ContributorsSulzman, Serita Lynne (Author) / Wang, Qing Hua (Thesis director) / Chan, Candace (Committee member) / Materials Science and Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
132569-Thumbnail Image.png
Description
This paper discusses the possibility of utilizing 2D molybdenum disulfide (MoS2) as a nanozyme to detect dopamine colorimetric assays, first by detecting color change in liquid solutions due to oxidation and then second on paper-based assays. MoS2 samples dispersed in methylcellulose (MC) solution were prepared using liquid-phase exfoliation through sonication.

This paper discusses the possibility of utilizing 2D molybdenum disulfide (MoS2) as a nanozyme to detect dopamine colorimetric assays, first by detecting color change in liquid solutions due to oxidation and then second on paper-based assays. MoS2 samples dispersed in methylcellulose (MC) solution were prepared using liquid-phase exfoliation through sonication. The dopamine (DOPA) and hydrogen peroxide (H¬¬2O2) solutions were prepared separately in specific concentrations. The solutions were mixed in a well plate and colorimetric results were analyzed by a plate reader, revealing a quantitative relationship between dopamine concentration and absorbance. Subsequent testing was conducted using paper assays, where combined solutions of DOPA and H2O2 were dropped onto paper with printed wax wells that contained dried MoS2. An analysis of the color change was conducted using a smartphone application called Color Grab to detect the red, green, and blue (RGB) values. Plotting the RGB results across the dopamine concentrations revealed a positively correlated relationship between the two factors, suggesting that a predictive model could be developed to predict dopamine concentrations based on measured colorimetric values.
ContributorsNalla, Akshay (Co-author, Co-author) / Wang, Qing Hua (Thesis director) / Green, Alexander (Committee member) / Mechanical and Aerospace Engineering Program (Contributor) / Materials Science and Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
132906-Thumbnail Image.png
Description
Plastics make up a large proportion of solid waste that ends up in landfills and pollute ecosystems, and do not readily decompose. Composites from fungus mycelium are a recent and promising alternative to replace plastics. Mycelium is the root-like fibers from fungi that grow underground. When fed with woody biomass,

Plastics make up a large proportion of solid waste that ends up in landfills and pollute ecosystems, and do not readily decompose. Composites from fungus mycelium are a recent and promising alternative to replace plastics. Mycelium is the root-like fibers from fungi that grow underground. When fed with woody biomass, the mycelium becomes a dense mass. From there, the mycelium is placed in mold to take its shape and grow. Once the growth process is done, the mycelium is baked to end the growth, thus making a mycelium brick. The woody biomass fed into the mycelium can include materials such as sawdust and pistachio shells, which are all cheap feedstock. In comparison to plastics, mycelium bricks are mostly biodegradable and eco-friendly. Mycelium bricks are resistant to water, fire, and mold and are also lightweight, sustainable, and affordable. Mycelium based materials are a viable option to replace less eco-friendly materials. This project aims to explore growth factors of mycelium and incorporate nanomaterials into mycelium bricks to achieve strong and sustainable materials, specifically for packaging materials. The purpose of integrating nanomaterials into mycelium bricks is to add further functionality such as conductivity, and to enhance properties such as mechanical strength.
ContributorsWong, Cindy (Author) / Wang, Qing Hua (Thesis director) / Green, Alexander (Committee member) / Materials Science and Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
171755-Thumbnail Image.png
Description
Polylactic Acid (PLA), a thermoplastic polymer is well-known for its biocompatibility, making it ideal for the manufacturing of biomedical devices. However, the current applications of PLA are commonly limited by its intrinsic polymer characteristics, such as low modulus, mechanical strength, and thermal conductivity. To enhance these physical properties, a biocompatible

Polylactic Acid (PLA), a thermoplastic polymer is well-known for its biocompatibility, making it ideal for the manufacturing of biomedical devices. However, the current applications of PLA are commonly limited by its intrinsic polymer characteristics, such as low modulus, mechanical strength, and thermal conductivity. To enhance these physical properties, a biocompatible nanodiamond enhanced PLA filament has been studied. Thermogravimetric analysis was performed to unveil the composition of nanodiamond in the composite. Four printing parameters: nozzle temperature, layer height, infill pattern and printing speed were considered and the Taguchi L9 orthogonal array was implemented for the design of experiments. Fused deposition modeling (FDM) technique was utilized to 3D print the PLA/Nanodiamond samples by altering the four printing parameters considered and were tested according to the standards for tensile strength, flexural strength, and thermal conductivity. Using the Taguchi optimization approach and analysis of variance (ANOVA), the generated experimental data was used to find the optimum set of printing parameters. Finally, cell studies were performed to demonstrate the biocompatibility of PLA/Nanodiamond. All these results could aid in determining the working ranges for FDM fabrication of PLA/Nanodiamond for biomedical applications.
ContributorsPoornabodha, Nikhitha (Author) / Nian, Qiong (Thesis advisor) / Kang, Wonmo (Committee member) / Zhuang, Houlong (Committee member) / Arizona State University (Publisher)
Created2022
168364-Thumbnail Image.png
Description
Laser powder bed fusion (LPBF) additive manufacturing (AM) has received widespread attention due to its ability to produce parts with complicated design and better surface finish compared to other additive techniques. LPBF uses a laser heat source to melt layers of powder particles and manufactures a part based on the

Laser powder bed fusion (LPBF) additive manufacturing (AM) has received widespread attention due to its ability to produce parts with complicated design and better surface finish compared to other additive techniques. LPBF uses a laser heat source to melt layers of powder particles and manufactures a part based on the CAD design. This process can benefit significantly through computational modeling. The objective of this thesis was to understand the thermal transport, and fluid flow phenomena of the process, and to optimize the main process parameters such as laser power and scan speed through a combination of computational, experimental, and statistical analysis. A multi-physics model was built using to model temperature profile, bead geometry and elemental evaporation in powder bed process using a non-gaussian interaction between laser heat source and metallic powder. Owing to the scarcity of thermo-physical properties of metallic powders in literature, thermal conductivity, diffusivity, and heat capacity was experimentally tested up to a temperature of 1400 degrees C. The values were used in the computational model, which improved the results significantly. The computational work was also used to assess the impact of fluid flow around melt pool. Dimensional analysis was conducted to determine heat transport mode at various laser power/scan speed combinations. Convective heat flow proved to be the dominant form of heat transfer at higher energy input due to violent flow of the fluid around the molten region, which can also create keyhole effect. The last part of the thesis focused on gaining useful information about several features of the bead area such as contact angle, porosity, voids and melt pool that were obtained using several combinations of laser power and scan speed. These features were quantified using process learning, which was then used to conduct a full factorial design that allows to estimate the effect of the process parameters on the output features. Both single and multi-response analysis are applied to analyze the output response. It was observed that laser power has more influential effect on all the features. Multi response analysis showed 150 W laser power and 200 mm/s produced bead with best possible features.
ContributorsAhsan, Faiyaz (Author) / Ladani, Leila (Thesis advisor) / Razmi, Jafar (Committee member) / Kwon, Beomjin (Committee member) / Nian, Qiong (Committee member) / Zhuang, Houlong (Committee member) / Arizona State University (Publisher)
Created2021
168665-Thumbnail Image.png
Description
Disordered many-body systems are ubiquitous in condensed matter physics, materials science and biological systems. Examples include amorphous and glassy states of matter, granular materials, and tissues composed of packings of cells in the extra-cellular matrix (ECM). Understanding the collective emergent properties in these systems is crucial to improving the capability

Disordered many-body systems are ubiquitous in condensed matter physics, materials science and biological systems. Examples include amorphous and glassy states of matter, granular materials, and tissues composed of packings of cells in the extra-cellular matrix (ECM). Understanding the collective emergent properties in these systems is crucial to improving the capability for controlling, engineering and optimizing their behaviors, yet it is extremely challenging due to their complexity and disordered nature. The main theme of the thesis is to address this challenge by characterizing and understanding a variety of disordered many-body systems via unique statistical geometrical and topological tools and the state-of-the-art simulation methods. Two major topics of the thesis are modeling ECM-mediated multicellular dynamics and understanding hyperuniformity in 2D material systems. Collective migration is an important mode of cell movement for several biological processes, and it has been the focus of a large number of studies over the past decades. Hyperuniform (HU) state is a critical state in a many-particle system, an exotic property of condensed matter discovered recently. The main focus of this thesis is to study the mechanisms underlying collective cell migration behaviors by developing theoretical/phenomenological models that capture the features of ECM-mediated mechanical communications in vitro and investigate general conditions that can be imposed on hyperuniformity-preserving and hyperuniformity-generating operations, as well as to understand how various novel transport physical properties arise from the unique hyperuniform long-range correlations.
ContributorsZheng, Yu (Author) / Jiao, Yang (Thesis advisor) / Zhuang, Houlong (Committee member) / Beckstein, Oliver (Committee member) / Ros, Robert (Committee member) / Arizona State University (Publisher)
Created2022