Matching Items (193)
Filtering by

Clear all filters

136329-Thumbnail Image.png
Description
Lean and Green construction methodologies are prevalent in today's construction industry. Green construction implementation in buildings has progressed quickly due to the popularity and development of building rating systems, such as LEED, Green Globes, and the Living Building Challenge. Similarly, lean construction has become more popular as this philosophy often

Lean and Green construction methodologies are prevalent in today's construction industry. Green construction implementation in buildings has progressed quickly due to the popularity and development of building rating systems, such as LEED, Green Globes, and the Living Building Challenge. Similarly, lean construction has become more popular as this philosophy often leads to efficient construction and improved owner satisfaction. Green construction is defined as using sustainable materials in the construction process to eliminate environmental degradation and ensure that material and equipment use aligns with the design intent and promotes efficient building performance. Lean construction is defined as a set of operational/systematic processes that reduce waste and eliminates defects in the project process throughout its lifecycle. This paper describes the implementation of Lean and Green construction processes to determine the trends that each methodology contributes to a project as well as how these methodologies synergize. The authors identified common elements of each methodology through semi-structured interviews with several construction industry professionals who had extensive experience with lean and green construction. Interviewees report lean and green construction philosophies are different "flavors" of the industry; however, interviewees also state if implemented together, these processes often result in a high-performance building.
ContributorsMaris, Kelsey Lynn (Co-author) / Parrish, Kristen (Co-author, Thesis director) / Olson, Patricia (Committee member) / Barrett, The Honors College (Contributor) / School of Sustainability (Contributor) / Del E. Webb Construction (Contributor)
Created2015-05
136335-Thumbnail Image.png
Description
The primary motor cortex (M1) plays a vital role in motor planning and execution, as well as in motor learning. Baseline corticospinal excitability (CSE) in M1 is known to increase as a result of motor learning, but less is understand about the modulation of CSE at the pre-execution planning stage

The primary motor cortex (M1) plays a vital role in motor planning and execution, as well as in motor learning. Baseline corticospinal excitability (CSE) in M1 is known to increase as a result of motor learning, but less is understand about the modulation of CSE at the pre-execution planning stage due to learning. This question was addressed using single pulse transcranial magnetic stimulation (TMS) to measure the modulation of both baseline and planning CSE due to learning a reach to grasp task. It was hypothesized that baseline CSE would increase and planning CSE decrease as a function of trial; an increase in baseline CSE would replicate established findings in the literature, while a decrease in planning would be a novel finding. Eight right-handed subjects were visually cued to exert a precise grip force, with the goal of producing that force accurately and consistently. Subjects effectively learned the task in the first 10 trials, but no significant trends were found in the modulation of baseline or planning CSE. The lack of significant results may be due to the very quick learning phase or the lower intensity of training as compared to past studies. The findings presented here suggest that planning and baseline CSE may be modulated along different time courses as learning occurs and point to some important considerations for future studies addressing this question.
ContributorsMoore, Dalton Dale (Author) / Santello, Marco (Thesis director) / Kleim, Jeff (Committee member) / Barrett, The Honors College (Contributor) / Harrington Bioengineering Program (Contributor)
Created2015-05
136195-Thumbnail Image.png
Description
The intervertebral disc goes through degenerative changes with age, which leads to disc thinning, bulging, or herniation. Spinal fusion treatments are ineffective as they cause quicker degeneration of adjacent discs and fail in nearly 20% of cases, so researchers have turned to tissue-engineering biocompatible intervertebral discs for transplantation. However novel

The intervertebral disc goes through degenerative changes with age, which leads to disc thinning, bulging, or herniation. Spinal fusion treatments are ineffective as they cause quicker degeneration of adjacent discs and fail in nearly 20% of cases, so researchers have turned to tissue-engineering biocompatible intervertebral discs for transplantation. However novel and effective as this may seem, these transplanted discs still show evidence of degeneration after just 5 years. I hypothesize that these discs are degenerating due to a blockage of the cartilaginous endplates post-transplantation that is hindering nutrient transport through the intervertebral disc. In order to test this hypothesis, I developed a mathematical model of nutrient transport through the intervertebral disc in one diurnal daily loading cycle. This model was used to simulate open endplates and blocked endplates and then compare differences in nutrient concentration and nutrient transport to the center of the disc. Results from the math model simulations were then compared to in vitro experimental data collected in lab to verify the findings on a physiological level. Results showed significant differences, both in vitro and in the model, between nutrient transport in open endplates vs blocked endplates, lending support to the original hypothesis. This study only presents preliminary results, but could hold the key to preventing future disc degeneration post-transplantation.
ContributorsMunter, Bryce Taylor (Author) / Santello, Marco (Thesis director) / Caplan, Michael (Committee member) / Giers, Morgan (Committee member) / Barrett, The Honors College (Contributor) / Harrington Bioengineering Program (Contributor)
Created2015-05
135900-Thumbnail Image.png
Description
As the demand for natural resources increases with population growth, importance has been placed on environmental issues due to increasing pressure on land, water, air, and raw materials. In order to sustain the environment and natural resources, sustainable engineering and earth systems engineering and management (ESEM) is vital for future

As the demand for natural resources increases with population growth, importance has been placed on environmental issues due to increasing pressure on land, water, air, and raw materials. In order to sustain the environment and natural resources, sustainable engineering and earth systems engineering and management (ESEM) is vital for future populations. The Aral Sea and the Florida Everglades are both regions that are heavily impacted by human design decisions. Comparing and analyzing the implications and outcomes of these human design decisions allows conclusions to be made regarding how earth systems engineering and management can be best accomplished. The Aral Sea, located in central Asia between Kazakhstan and Uzbekistan, is a case study of an ecosystem that has collapsed under the pressure of agricultural expansion. This has caused extensive economic, health, agricultural, and environmental impacts. The Everglades in southern Florida is a case study where the ecosystem has evolved from its original state, rather than collapsed, due to human settlement and water resource demand. In order to determine effective sustainable engineering approaches, the case studies will be evaluated using ESEM principles. These principles are used as guidance in executing better practice of sustainable engineering. When comparing the two case studies, it appears that the Everglades is an adequate representation of effective ESEM approaches, while the Aral Sea is not reflective of effective approaches. When practicing ESEM, it is critical that the principles be applied as a whole rather than individually. While the ESEM principles do not guarantee success, they offer an effective guide to dealing with the complexity and uncertainty in many of today's systems.
ContributorsRidley, Brooke Nicole (Author) / Allenby, Brad (Thesis director) / Parrish, Kristen (Committee member) / Civil, Environmental and Sustainable Engineering Programs (Contributor) / Barrett, The Honors College (Contributor)
Created2015-12
135593-Thumbnail Image.png
Description
The effect of conflicting sensorimotor memories on optimal force strategies was explored. Subjects operated a virtual object controlled by a physical handle to complete a simple straight-line task. Perturbations applied to the handle induced a period of increased error in subject accuracy. After two blocks of 33 trials, perturbations switched

The effect of conflicting sensorimotor memories on optimal force strategies was explored. Subjects operated a virtual object controlled by a physical handle to complete a simple straight-line task. Perturbations applied to the handle induced a period of increased error in subject accuracy. After two blocks of 33 trials, perturbations switched direction, inducing increased error from the previous trials. Subjects returned after a 24-hour period to complete a similar protocol, but beginning with the second context and ending with the first. Interference from the first context on each day caused an increase in initial error for the second (P < 0.05). Following the rest period, subjects showed retention of the sensorimotor memory from the previous day through significantly decreased initial error (P = 3x10-6). However, subjects showed an increase in forces for each new context resulting from a sub-optimal motor strategy. Higher levels of total effort (P < 0.05) and a lack of separation between force values for opposing and non-opposing digits (P > 0.05) indicated a strategy that used more energy to complete the task, even when rates of learning appeared identical or improved. Two possible mechanisms for this lack of energy conservation have been proposed.
ContributorsSmith, Michael David (Author) / Santello, Marco (Thesis director) / Kleim, Jeffrey (Committee member) / Harrington Bioengineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
136656-Thumbnail Image.png
Description
The objective for Under the Camper Shell was to build a prototype of a full living environment within the confines of a pickup truck bed and camper shell. The total volume available to work with is approximately 85ft3. This full living environment entails functioning systems for essential modern living, providing

The objective for Under the Camper Shell was to build a prototype of a full living environment within the confines of a pickup truck bed and camper shell. The total volume available to work with is approximately 85ft3. This full living environment entails functioning systems for essential modern living, providing shelter and spaces for cooking, sleeping, eating, and sanitation. The project proved to be very challenging from the start. First, the livable space is extremely small, being only tall enough for one to sit up straight. The truck and camper shell were both borrowed items, so no modifications were allowed for either, e.g. drilling holes for mounting. The idea was to create a system that could be easily removed, transforming it from a camper to a utility truck. The systems developed for the living environment would be modular and transformative so to accommodate for different necessities when packing. The goal was to create a low-water system with sustainability in mind. Insulating the space was the largest challenge and the most rewarding, using body heat to warm the space and insulate from the elements. Comfort systems were made of high density foam cushions in sections to allow folding and stacking for different functions (sleeping, lounging, and sitting). Sanitation is necessary for healthy living and regular human function. A composting toilet was used for the design, lending to low-water usage and is sustainable over time. Saw dust would be necessary for its function, but upon composting, the unit will generate sufficient amounts of heat to act as a space heater. Showering serves the functions of exfoliation and ridding of bacteria, both of which bath wipes can accomplish, limiting massive volumes of water storage and waste. Storage systems were also designed for modularity. Hooks were installed the length of the bed for hanging or securing items as necessary. Some are available for hanging bags. A cabinetry rail also runs the length of the bed to allow movement of hard storage to accommodate different scenarios. The cooking method is called "sous-vide", a method of cooking food in air-tight bags submerged in hot water. The water is reusable for cooking and no dishes are necessary for serving. Overall, the prototype fulfilled its function as a full living environment with few improvements necessary for future use.
ContributorsLimsirichai, Pimwadee (Author) / Foy, Joseph (Thesis director) / Parrish, Kristen (Committee member) / Barrett, The Honors College (Contributor) / Materials Science and Engineering Program (Contributor) / School of Sustainability (Contributor)
Created2014-12
137154-Thumbnail Image.png
Description
Many student engagement studies take a holistic view of the student experience at a university setting, which includes factors both inside and outside of the classroom. However, most engagement improvements focus on activities outside of the classroom. Some research regarding improving teaching styles and activities shows an impact on engagement,

Many student engagement studies take a holistic view of the student experience at a university setting, which includes factors both inside and outside of the classroom. However, most engagement improvements focus on activities outside of the classroom. Some research regarding improving teaching styles and activities shows an impact on engagement, but little research has investigated the impact of the built environment on student engagement. This paper explores the definition of student engagement, what environmental variables affect building occupant performance, and specifically addresses how environmental variables can impact student engagement. The authors provide a review of literature discussing these variables as well as propose a method for quantifying the impact of the built environment on students based on results of a preliminary study. Evidence of a relationship between human comfort and student engagement can provide an argument for how thoughtful building designs can improve student success and engineering education. It can further extend to industry settings where green building design can lower operating costs and improve worker satisfaction and productivity.
ContributorsDuggan, Kathleen Rose (Author) / Parrish, Kristen (Thesis director) / Khanna, Vikas (Committee member) / Beckert, Kimberly (Committee member) / Industrial, Systems (Contributor) / Barrett, The Honors College (Contributor) / School of Mathematical and Statistical Sciences (Contributor)
Created2014-05
137642-Thumbnail Image.png
Description
The paper was written for the International Group for Lean Construction Conference in July 2013 in Fortaleza, Brazil.

With the advent of sustainable building ordinances in the United States and internationally, contractors are required to deliver sustainable projects but have historically not been considered partners in developing the sustainability goals and

The paper was written for the International Group for Lean Construction Conference in July 2013 in Fortaleza, Brazil.

With the advent of sustainable building ordinances in the United States and internationally, contractors are required to deliver sustainable projects but have historically not been considered partners in developing the sustainability goals and objectives for projects. Additionally, as alternative project delivery methods gain popularity, contractors have an opportunity and—in an increasing number of cases—a requirement, to take a larger role in sustainability efforts beyond the design phase. Understanding the contractor’s self-perceived role in this industry is imperative to informing their future role in the sustainable construction industry. This paper presents data and analysis of a survey of general contractors in the Phoenix, Arizona market that asked for their opinions and viewpoints regarding sustainable construction. Respondents provided feedback about corporate profitability, growth forecast, and the perceived efficiency of the U.S Green Building Council’s LEED rating system. The survey also queried contractors about current and future work breakdown structures for sustainable project delivery as well as their underlying motives for involvement in these projects.
Academics from Arizona State University worked with local industry to develop the survey in 2012 and the survey was deployed in 2013. We sent the survey to 76 contractors and received responses from 21, representing a 27.6% response rate. Respondents include representatives from general contractors, mechanical contractors, and electrical contractors, among others. This paper presents the responses from general contractors as they typically have most contact with the owner and design teams.
ContributorsHolloway, Skyler Brock (Author) / Parrish, Kristen (Thesis director) / Bashford, Howard (Committee member) / Meek, Jeremy (Committee member) / Barrett, The Honors College (Contributor) / School of Sustainability (Contributor) / W. P. Carey School of Business (Contributor) / Del E. Webb Construction (Contributor)
Created2013-05
137817-Thumbnail Image.png
Description
G3Box's 2013 Marketing Plan outlines a strategic plan and short term operational strategies for the company. The document includes a discussion of the company's decision to enter the market for healthcare facilities in developing counties, and a situation assessment of the market conditions. G3Box is targeting small and large NGOs

G3Box's 2013 Marketing Plan outlines a strategic plan and short term operational strategies for the company. The document includes a discussion of the company's decision to enter the market for healthcare facilities in developing counties, and a situation assessment of the market conditions. G3Box is targeting small and large NGOs that currently provide healthcare facilities in developing countries. The market size for healthcare aid in developing countries is estimated to be $1.7 billion. The plan also analyses the customer's value chain and buying cycle by using voice of the customer data. The strategic position analysis profiles G3Box's competition and discusses the company's differential advantage versus other options for healthcare facilities in developing countries. Next the document discusses G3Box's market strategy and implementation, along with outlining a value proposition for the company. G3Box has two objectives for 2013: 1) Increase sales revenue to $1.3 million and 2) increase market presence to 25%. In order to reach these objectives, G3Box has developed a primary and secondary strategic focus for each objective. The primary strategies are relationship selling and online marketing. The secondary strategies are developing additional value-added activities and public relations.
ContributorsWalters, John (Author) / Denning, Michael (Thesis director) / Ostrom, Lonnie (Committee member) / Carroll, James (Committee member) / Barrett, The Honors College (Contributor) / Ira A. Fulton School of Engineering (Contributor)
Created2012-12
137819-Thumbnail Image.png
Description
The majority of the 52 photovoltaic installations at ASU are governed by power purchase agreements (PPA) that set a fixed per kilowatt-hour rate at which ASU buys power from the system owner over the period of 15-20 years. PPAs require accurate predictions of the system output to determine the financial

The majority of the 52 photovoltaic installations at ASU are governed by power purchase agreements (PPA) that set a fixed per kilowatt-hour rate at which ASU buys power from the system owner over the period of 15-20 years. PPAs require accurate predictions of the system output to determine the financial viability of the system installations as well as the purchase price. The research was conducted using PPAs and historical solar power production data from the ASU's Energy Information System (EIS). The results indicate that most PPAs slightly underestimate the annual energy yield. However, the modeled power output from PVsyst indicates that higher energy outputs are possible with better system monitoring.
ContributorsVulic, Natasa (Author) / Bowden, Stuart (Thesis director) / Bryan, Harvey (Committee member) / Sharma, Vivek (Committee member) / Barrett, The Honors College (Contributor) / School of Sustainability (Contributor) / Ira A. Fulton School of Engineering (Contributor)
Created2012-12