Matching Items (392)
Filtering by

Clear all filters

150926-Thumbnail Image.png
Description
This thesis discusses the evolution of conduction mechanism in the silver (Ag) on zinc oxide (ZnO) thin film system with respect to the Ag morphology. As a plausible substitute for indium tin oxide (ITO), TCO/Metal/TCO (TMT) structure has received a lot of attentions as a prospective ITO substitute due to

This thesis discusses the evolution of conduction mechanism in the silver (Ag) on zinc oxide (ZnO) thin film system with respect to the Ag morphology. As a plausible substitute for indium tin oxide (ITO), TCO/Metal/TCO (TMT) structure has received a lot of attentions as a prospective ITO substitute due to its low resistivity and desirable transmittance. However, the detailed conduction mechanism is not fully understood. In an attempt to investigate the conduction mechanism of the ZnO/Ag/ZnO thin film system with respect to the Ag microstructure, the top ZnO layer is removed, which offers a better view of Ag morphology by using scanning electron microscopy (SEM). With 2 nm thick Ag layer, it is seen that the Ag forms discrete islands with small islands size (r), but large separation (s); also the effective resistivity of the system is extremely high. This regime is designated as dielectric zone. In this regime, thermionic emission and activated tunneling conduction mechanisms are considered. Based on simulations, when "s" was beyond 6 nm, thermionic emission dominates; with "s" less than 6 nm, activated tunneling is the dominating mechanism. As the Ag thickness increases, the individual islands coalesce and Ag clusters are formed. At certain Ag thickness, there are one or several Ag clusters that percolate the ZnO film, and the effective resistivity of the system exhibits a tremendous drop simultaneously, because the conducting electrons do not need to overcome huge ZnO barrier to transport. This is recognized as percolation zone. As the Ag thickness grows, Ag film becomes more continuous and there are no individual islands left on the surface. The effective resistivity decreases and is comparable to the characteristics of metallic materials, so this regime is categorized as metallic zone. The simulation of the Ag thin film resistivity is performed in terms of Ag thickness, and the experimental data fits the simulation well, which supports the proposed models. Hall measurement and four point probe measurement are carried out to characterize the electrical properties of the thin film system.
ContributorsZhang, Shengke (Author) / Alford, Terry L. (Thesis advisor) / Schroder, Dieter K. (Committee member) / Tasooji, Amaneh (Committee member) / Arizona State University (Publisher)
Created2012
135040-Thumbnail Image.png
Description
The aim of this study was to compare the effects of an intervention involving physical practice combined with motor imagery and physical practice alone on swimming performance for fifty-yard freestyle. Forty-five male and female high school swimmers were participants on two different high school teams. One team was the treatment

The aim of this study was to compare the effects of an intervention involving physical practice combined with motor imagery and physical practice alone on swimming performance for fifty-yard freestyle. Forty-five male and female high school swimmers were participants on two different high school teams. One team was the treatment group, which included the participants partaking in both motor imagery and physical practice. The other team served as the age matched control group, and the swimmers participated in physical practice only. The combined practice group performed motor imagery three times per week and physical practice five times per week. The physical practice only group performed physical practice five times per week. Each group performed their respective tasks for 9-weeks. Pre-, half-point, and post-tests consisted of a timed fifty-yard freestyle. The treatment group produced significantly faster times on the percent change in swim time scores in comparison to the control group for the half-time to post-time and pre-time to post-time score (p=.000). The treatment group also produced better performances on the pre-time to half-time scores, however, the results were not statistically significant (p = .009). Findings, therefore, support the effectiveness of motor imagery in enhancing swim performance, when combined with physical practice.
ContributorsSears, Mychaela Leduc (Author) / Hoffner, Kristin (Thesis director) / Broman, Tannah (Committee member) / School of Nutrition and Health Promotion (Contributor) / Barrett, The Honors College (Contributor)
Created2016-12
154921-Thumbnail Image.png
Description
The proposed research mainly focuses on employing tunable materials to achieve dynamic control of radiative heat transfer in both far and near fields for thermal management. Vanadium dioxide (VO2), which undergoes a phase transition from insulator to metal at the temperature of 341 K, is one tunable material being applied.

The proposed research mainly focuses on employing tunable materials to achieve dynamic control of radiative heat transfer in both far and near fields for thermal management. Vanadium dioxide (VO2), which undergoes a phase transition from insulator to metal at the temperature of 341 K, is one tunable material being applied. The other one is graphene, whose optical properties can be tuned by chemical potential through external bias or chemical doping.

In the far field, a VO2-based metamaterial thermal emitter with switchable emittance in the mid-infrared has been theoretically studied. When VO2 is in the insulating phase, high emittance is observed at the resonance frequency of magnetic polaritons (MPs), while the structure becomes highly reflective when VO2 turns metallic. A VO2-based thermal emitter with tunable emittance is also demonstrated due to the excitation of MP at different resonance frequencies when VO2 changes phase. Moreover, an infrared thermal emitter made of graphene-covered SiC grating could achieve frequency-tunable emittance peak via the change of the graphene chemical potential.

In the near field, a radiation-based thermal rectifier is constructed by investigating radiative transfer between VO2 and SiO2 separated by nanometer vacuum gap distances. Compared to the case where VO2 is set as the emitter at 400 K as a metal, when VO2 is considered as the receiver at 300 K as an insulator, the energy transfer is greatly enhanced due to the strong surface phonon polariton (SPhP) coupling between insulating VO2 and SiO2. A radiation-based thermal switch is also explored by setting VO2 as both the emitter and the receiver. When both VO2 emitter and receiver are at the insulating phase, the switch is at the “on” mode with a much enhanced heat flux due to strong SPhP coupling, while the near-field radiative transfer is greatly suppressed when the emitting VO2 becomes metallic at temperatures higher than 341K during the “off” mode. In addition, an electrically-gated thermal modulator made of graphene covered SiC plates is theoretically studied with modulated radiative transport by varying graphene chemical potential. Moreover, the MP effect on near-field radiative transport has been investigated by spectrally enhancing radiative heat transfer between two metal gratings.
ContributorsYang, Yue (Author) / Wang, Liping (Thesis advisor) / Phelan, Patrick (Committee member) / Wang, Robert (Committee member) / Tongay, Sefaattin (Committee member) / Rykaczewski, Konrad (Committee member) / Arizona State University (Publisher)
Created2016
128329-Thumbnail Image.png
Description

The emerging field of neuroprosthetics is focused on the development of new therapeutic interventions that will be able to restore some lost neural function by selective electrical stimulation or by harnessing activity recorded from populations of neurons. As more and more patients benefit from these approaches, the interest in neural

The emerging field of neuroprosthetics is focused on the development of new therapeutic interventions that will be able to restore some lost neural function by selective electrical stimulation or by harnessing activity recorded from populations of neurons. As more and more patients benefit from these approaches, the interest in neural interfaces has grown significantly and a new generation of penetrating microelectrode arrays are providing unprecedented access to the neurons of the central nervous system (CNS). These microelectrodes have active tip dimensions that are similar in size to neurons and because they penetrate the nervous system, they provide selective access to these cells (within a few microns). However, the very long-term viability of chronically implanted microelectrodes and the capability of recording the same spiking activity over long time periods still remain to be established and confirmed in human studies. Here we review the main responses to acute implantation of microelectrode arrays, and emphasize that it will become essential to control the neural tissue damage induced by these intracortical microelectrodes in order to achieve the high clinical potentials accompanying this technology.

ContributorsFernandez, Eduardo (Author) / Greger, Bradley (Author) / House, Paul A. (Author) / Aranda, Ignacio (Author) / Botella, Carlos (Author) / Albisua, Julio (Author) / Soto-Sanchez, Cristina (Author) / Alfaro, Arantxa (Author) / Normann, Richard A. (Author) / Ira A. Fulton Schools of Engineering (Contributor)
Created2014-07-21
127956-Thumbnail Image.png
Description

In this study, a low-cycle fatigue experiment was conducted on printed wiring boards (PWB). The Weibull regression model and computational Bayesian analysis method were applied to analyze failure time data and to identify important factors that influence the PWB lifetime. The analysis shows that both shape parameter and scale parameter

In this study, a low-cycle fatigue experiment was conducted on printed wiring boards (PWB). The Weibull regression model and computational Bayesian analysis method were applied to analyze failure time data and to identify important factors that influence the PWB lifetime. The analysis shows that both shape parameter and scale parameter of Weibull distribution are affected by the supplier factor and preconditioning methods Based on the energy equivalence approach, a 6-cycle reflow precondition can be replaced by a 5-cycle IST precondition, thus the total testing time can be greatly reduced. This conclusion was validated by the likelihood ratio test of two datasets collected under two different preconditioning methods Therefore, the Weibull regression modeling approach is an effective approach for accounting for the variation of experimental setting in the PWB lifetime prediction.

ContributorsPan, Rong (Author) / Xu, Xinyue (Author) / Juarez, Joseph (Author) / Ira A. Fulton Schools of Engineering (Contributor)
Created2016-11-12
127957-Thumbnail Image.png
Description

Studies about the data quality of National Bridge Inventory (NBI) reveal missing, erroneous, and logically conflicting data. Existing data quality programs lack a focus on detecting the logical inconsistencies within NBI and between NBI and external data sources. For example, within NBI, the structural condition ratings of some bridges improve

Studies about the data quality of National Bridge Inventory (NBI) reveal missing, erroneous, and logically conflicting data. Existing data quality programs lack a focus on detecting the logical inconsistencies within NBI and between NBI and external data sources. For example, within NBI, the structural condition ratings of some bridges improve over a period while having no improvement activity or maintenance funds recorded in relevant attributes documented in NBI. An example of logical inconsistencies between NBI and external data sources is that some bridges are not located within 100 meters of any roads extracted from Google Map. Manual detection of such logical errors is tedious and error-prone. This paper proposes a systematical “hypothesis testing” approach for automatically detecting logical inconsistencies within NBI and between NBI and external data sources. Using this framework, the authors detected logical inconsistencies in the NBI data of two sample states for revealing suspicious data items in NBI. The results showed that about 1% of bridges were not located within 100 meters of any actual roads, and few bridges showed improvements in the structural evaluation without any reported maintenance records.

ContributorsDin, Zia Ud (Author) / Tang, Pingbo (Author) / Ira A. Fulton Schools of Engineering (Contributor)
Created2016-05-20
128992-Thumbnail Image.png
Description

Background: Robotic devices have been utilized in gait rehabilitation but have only produced moderate results when compared to conventional physiotherapy. Because bipedal walking requires neural coupling and dynamic interactions between the legs, a fundamental understanding of the sensorimotor mechanisms of inter-leg coordination during walking, which are not well understood but are

Background: Robotic devices have been utilized in gait rehabilitation but have only produced moderate results when compared to conventional physiotherapy. Because bipedal walking requires neural coupling and dynamic interactions between the legs, a fundamental understanding of the sensorimotor mechanisms of inter-leg coordination during walking, which are not well understood but are systematically explored in this study, is needed to inform robotic interventions in gait therapy.

Methods: In this study we investigate mechanisms of inter-leg coordination by utilizing novel sensory perturbations created by real-time control of floor stiffness on a split-belt treadmill. We systematically alter the unilateral magnitude of the walking surface stiffness and the timing of these perturbations within the stance phase of the gait cycle, along with the level of body-weight support, while recording the kinematic and muscular response of the unperturbed leg. This provides new insight into the role of walking surface stiffness in inter-leg coordination during human walking. Both paired and unpaired unadjusted t-tests at the 95 % confidence level are used in the appropriate scenario to determine statistical significance of the results.

Results: We present results of increased hip, knee, and ankle flexion, as well as increased tibialis anterior and soleus activation, in the unperturbed leg of healthy subjects that is repeatable and scalable with walking surface stiffness. The observed response was not impacted by the level of body-weight support provided, which suggests that walking surface stiffness is a unique stimulus in gait. In addition, we show that the activation of the tibialis anterior and soleus muscles is altered by the timing of the perturbations within the gait cycle.

Conclusions: This paper characterizes the contralateral leg’s response to ipsilateral manipulations of the walking surface and establishes the importance of walking surface stiffness in inter-leg coordination during human walking.

ContributorsSkidmore, Jeffrey (Author) / Artemiadis, Panagiotis (Author) / Ira A. Fulton Schools of Engineering (Contributor)
Created2016-03-22
127869-Thumbnail Image.png
Description

The recently emerging trend of self-driving vehicles and information sharing technologies, made available by private technology vendors, starts creating a revolutionary paradigm shift in the coming years for traveler mobility applications. By considering a deterministic traveler decision making framework at the household level in congested transportation networks, this paper aims

The recently emerging trend of self-driving vehicles and information sharing technologies, made available by private technology vendors, starts creating a revolutionary paradigm shift in the coming years for traveler mobility applications. By considering a deterministic traveler decision making framework at the household level in congested transportation networks, this paper aims to address the challenges of how to optimally schedule individuals’ daily travel patterns under the complex activity constraints and interactions. We reformulate two special cases of household activity pattern problem (HAPP) through a high-dimensional network construct, and offer a systematic comparison with the classical mathematical programming models proposed by Recker (1995). Furthermore, we consider the tight road capacity constraint as another special case of HAPP to model complex interactions between multiple household activity scheduling decisions, and this attempt offers another household-based framework for linking activity-based model (ABM) and dynamic traffic assignment (DTA) tools. Through embedding temporal and spatial relations among household members, vehicles and mandatory/optional activities in an integrated space-time-state network, we develop two 0-1 integer linear programming models that can seamlessly incorporate constraints for a number of key decisions related to vehicle selection, activity performing and ridesharing patterns under congested networks. The well-structured network models can be directly solved by standard optimization solvers, and further converted to a set of time-dependent state-dependent least cost path-finding problems through Lagrangian relaxation, which permit the use of computationally efficient algorithms on large-scale high-fidelity transportation networks.

ContributorsLiu, Jiangtao (Author) / Kang, Jee Eun (Author) / Zhou, Xuesong (Author) / Pendyala, Ram (Author) / Ira A. Fulton Schools of Engineering (Contributor)
Created2017-06-15
141462-Thumbnail Image.png
Description

Despite the fact that seizures are commonly associated with autism spectrum disorder (ASD), the effectiveness of treatments for seizures has not been well studied in individuals with ASD. This manuscript reviews both traditional and novel treatments for seizures associated with ASD. Studies were selected by systematically searching major electronic databases

Despite the fact that seizures are commonly associated with autism spectrum disorder (ASD), the effectiveness of treatments for seizures has not been well studied in individuals with ASD. This manuscript reviews both traditional and novel treatments for seizures associated with ASD. Studies were selected by systematically searching major electronic databases and by a panel of experts that treat ASD individuals. Only a few anti-epileptic drugs (AEDs) have undergone carefully controlled trials in ASD, but these trials examined outcomes other than seizures. Several lines of evidence point to valproate, lamotrigine, and levetiracetam as the most effective and tolerable AEDs for individuals with ASD. Limited evidence supports the use of traditional non-AED treatments, such as the ketogenic and modified Atkins diet, multiple subpial transections, immunomodulation, and neurofeedback treatments. Although specific treatments may be more appropriate for specific genetic and metabolic syndromes associated with ASD and seizures, there are few studies which have documented the effectiveness of treatments for seizures for specific syndromes. Limited evidence supports l-carnitine, multivitamins, and N-acetyl-l-cysteine in mitochondrial disease and dysfunction, folinic acid in cerebral folate abnormalities and early treatment with vigabatrin in tuberous sclerosis complex. Finally, there is limited evidence for a number of novel treatments, particularly magnesium with pyridoxine, omega-3 fatty acids, the gluten-free casein-free diet, and low-frequency repetitive transcranial magnetic simulation. Zinc and l-carnosine are potential novel treatments supported by basic research but not clinical studies. This review demonstrates the wide variety of treatments used to treat seizures in individuals with ASD as well as the striking lack of clinical trials performed to support the use of these treatments. Additional studies concerning these treatments for controlling seizures in individuals with ASD are warranted.

ContributorsFrye, Richard E. (Author) / Rossignol, Daniel (Author) / Casanova, Manuel F. (Author) / Brown, Gregory L. (Author) / Martin, Victoria (Author) / Edelson, Stephen (Author) / Coben, Robert (Author) / Lewine, Jeffrey (Author) / Slattery, John C. (Author) / Lau, Chrystal (Author) / Hardy, Paul (Author) / Fatemi, S. Hossein (Author) / Folsom, Timothy D. (Author) / MacFabe, Derrick (Author) / Adams, James (Author) / Ira A. Fulton Schools of Engineering (Contributor)
Created2013-09-13
141466-Thumbnail Image.png
Description

There is a growing body of scientific evidence that the health of the microbiome (the trillions of microbes that inhabit the human host) plays an important role in maintaining the health of the host and that disruptions in the microbiome may play a role in certain disease processes. An increasing

There is a growing body of scientific evidence that the health of the microbiome (the trillions of microbes that inhabit the human host) plays an important role in maintaining the health of the host and that disruptions in the microbiome may play a role in certain disease processes. An increasing number of research studies have provided evidence that the composition of the gut (enteric) microbiome (GM) in at least a subset of individuals with autism spectrum disorder (ASD) deviates from what is usually observed in typically developing individuals. There are several lines of research that suggest that specific changes in the GM could be causative or highly associated with driving core and associated ASD symptoms, pathology, and comorbidities which include gastrointestinal symptoms, although it is also a possibility that these changes, in whole or in part, could be a consequence of underlying pathophysiological features associated with ASD. However, if the GM truly plays a causative role in ASD, then the manipulation of the GM could potentially be leveraged as a therapeutic approach to improve ASD symptoms and/or comorbidities, including gastrointestinal symptoms.

One approach to investigating this possibility in greater detail includes a highly controlled clinical trial in which the GM is systematically manipulated to determine its significance in individuals with ASD. To outline the important issues that would be required to design such a study, a group of clinicians, research scientists, and parents of children with ASD participated in an interdisciplinary daylong workshop as an extension of the 1st International Symposium on the Microbiome in Health and Disease with a Special Focus on Autism (www.microbiome-autism.com). The group considered several aspects of designing clinical studies, including clinical trial design, treatments that could potentially be used in a clinical trial, appropriate ASD participants for the clinical trial, behavioral and cognitive assessments, important biomarkers, safety concerns, and ethical considerations. Overall, the group not only felt that this was a promising area of research for the ASD population and a promising avenue for potential treatment but also felt that further basic and translational research was needed to clarify the clinical utility of such treatments and to elucidate possible mechanisms responsible for a clinical response, so that new treatments and approaches may be discovered and/or fostered in the future.

ContributorsFrye, Richard E. (Author) / Slattery, John (Author) / MacFabe, Derrick F. (Author) / Allen-Vercoe, Emma (Author) / Parker, William (Author) / Rodakis, John (Author) / Adams, James (Author) / Krajmalnik-Brown, Rosa (Author) / Bolte, Ellen (Author) / Kahler, Stephen (Author) / Jennings, Jana (Author) / James, Jill (Author) / Cerniglia, Carl E. (Author) / Midtvedt, Tore (Author) / Ira A. Fulton Schools of Engineering (Contributor)
Created2015-05-07