Matching Items (76)
151122-Thumbnail Image.png
Description
Parental care provides many benefits to offspring. One widely realized benefit is enhanced regulation of offspring's thermal environment. The developmental thermal environment during development can be optimized behaviorally through nest site selection and brooding, and it can be further enhanced by physiological heat production. In fact, enhancement of the developmental

Parental care provides many benefits to offspring. One widely realized benefit is enhanced regulation of offspring's thermal environment. The developmental thermal environment during development can be optimized behaviorally through nest site selection and brooding, and it can be further enhanced by physiological heat production. In fact, enhancement of the developmental thermal environment has been proposed as the initial driving force for the evolution of endothermy in bird and mammals. I used pythons (Squamata: Pythonidae) to expand existing knowledge of behavioral and physiological parental tactics used to regulate offspring thermal environment. I first demonstrated that brooding behavior in the Children's python (Antaresia childreni) is largely driven by internal mechanisms, similar to solitary birds, suggesting that the early evolution of the parent-offspring association was probably hormonally driven. Two species of python are known to be facultatively thermogenic (i.e., are endothermic during reproduction). I expand current knowledge of thermogenesis in Burmese pythons (Python molurus) by demonstrating that females use their own body temperature to modulate thermogenesis. Although pythons are commonly cited as thermogenic, the actual extent of thermogenesis within the family Pythonidae is unknown. Thus, I assessed the thermogenic capability of five previously unstudied species of python to aid in understanding phylogenetic, morphological, and distributional influences on thermogenesis in pythons. Results suggest that facultative thermogenesis is likely rare among pythons. To understand why it is rare, I used an artificial model to demonstrate that energetic costs to the female likely outweigh thermal benefits to the clutch in species that do not inhabit cooler latitudes or lack large energy reserves. In combination with other studies, these results show that facultative thermogenesis during brooding in pythons likely requires particular ecological and physiological factors for its evolution.
ContributorsBrashears, Jake (Author) / DeNardo, Dale (Thesis advisor) / Harrison, Jon (Committee member) / Deviche, Pierre (Committee member) / McGraw, Kevin (Committee member) / Smith, Andrew (Committee member) / Arizona State University (Publisher)
Created2012
151155-Thumbnail Image.png
Description
In this dissertation, in-situ X-ray and ultraviolet photoemission spectroscopy have been employed to study the interface chemistry and electronic structure of potential high-k gate stack materials. In these gate stack materials, HfO2 and La2O3 are selected as high-k dielectrics, VO2 and ZnO serve as potential channel layer materials. The gate

In this dissertation, in-situ X-ray and ultraviolet photoemission spectroscopy have been employed to study the interface chemistry and electronic structure of potential high-k gate stack materials. In these gate stack materials, HfO2 and La2O3 are selected as high-k dielectrics, VO2 and ZnO serve as potential channel layer materials. The gate stack structures have been prepared using a reactive electron beam system and a plasma enhanced atomic layer deposition system. Three interrelated issues represent the central themes of the research: 1) the interface band alignment, 2) candidate high-k materials, and 3) band bending, internal electric fields, and charge transfer. 1) The most highlighted issue is the band alignment of specific high-k structures. Band alignment relationships were deduced by analysis of XPS and UPS spectra for three different structures: a) HfO2/VO2/SiO2/Si, b) HfO2-La2O3/ZnO/SiO2/Si, and c) HfO2/VO2/ HfO2/SiO2/Si. The valence band offset of HfO2/VO2, ZnO/SiO2 and HfO2/SiO2 are determined to be 3.4 ± 0.1, 1.5 ± 0.1, and 0.7 ± 0.1 eV. The valence band offset between HfO2-La2O3 and ZnO was almost negligible. Two band alignment models, the electron affinity model and the charge neutrality level model, are discussed. The results show the charge neutrality model is preferred to describe these structures. 2) High-k candidate materials were studied through comparison of pure Hf oxide, pure La oxide, and alloyed Hf-La oxide films. An issue with the application of pure HfO2 is crystallization which may increase the leakage current in gate stack structures. An issue with the application of pure La2O3 is the presence of carbon contamination in the film. Our study shows that the alloyed Hf-La oxide films exhibit an amorphous structure along with reduced carbon contamination. 3) Band bending and internal electric fields in the gate stack structure were observed by XPS and UPS and indicate the charge transfer during the growth and process. The oxygen plasma may induce excess oxygen species with negative charges, which could be removed by He plasma treatment. The final HfO2 capping layer deposition may reduce the internal potential inside the structures. The band structure was approaching to a flat band condition.
ContributorsZhu, Chiyu (Author) / Nemanich, Robert (Thesis advisor) / Chamberlin, Ralph (Committee member) / Chen, Tingyong (Committee member) / Ponce, Fernando (Committee member) / Smith, David (Committee member) / Arizona State University (Publisher)
Created2012
136142-Thumbnail Image.png
Description
Self-maintenance behaviors, like preening in birds, can have important effects on fitness in many animals. Birds produce preen oil, which is a mixture of volatile and non-volatile compounds, that is spread through their feathers during grooming and influences feather integrity, waterproofing, and coloration. As urban areas grow and present conditions

Self-maintenance behaviors, like preening in birds, can have important effects on fitness in many animals. Birds produce preen oil, which is a mixture of volatile and non-volatile compounds, that is spread through their feathers during grooming and influences feather integrity, waterproofing, and coloration. As urban areas grow and present conditions that may demand increased feather self-maintenance (e.g. due to soiling, pollution, elevated UV exposure due to natural habitat alterations), it is important to examine how preening and preen oil may be affected by this process. I assessed variation in preen oil composition in house finches (Haemorhous mexicanus) as a function of sex, urbanization, and plumage hue, a sexually selected indicator of male quality. Preen oil samples from birds captured at urban and rural sites were analyzed using gas chromatography-mass spectrometry. We detected 18 major peaks, which we tentatively identified as esters, and found that, although there were no sex or urban-rural differences in preen oil constituents, there was a significant interactive effect of sex and urbanization, with rural females and urban males having higher amounts of some components. This suggests that factors that vary with sex or urbanization, such as the timing of seasonal cycles, are affecting preen oil composition. There were no significant relationships between coloration and preen oil composition, suggesting that preen oil composition does not vary with male quality.
ContributorsBrooks, Ellen Elizabeth (Author) / McGraw, Kevin (Thesis director) / Liebig, Juergen (Committee member) / Weaver, Melinda (Committee member) / Barrett, The Honors College (Contributor) / School of Life Sciences (Contributor)
Created2015-05
137165-Thumbnail Image.png
Description
Testosterone (T) is a steroid hormone that affects behavior and reproductive traits (e.g. spermatogenesis and ornamentation) in vertebrates. In addition to long-term influences, T can rapidly increase in males following aggressive male-male encounters. Less is known how females directly influence male T and behavior, though research with humans suggests that

Testosterone (T) is a steroid hormone that affects behavior and reproductive traits (e.g. spermatogenesis and ornamentation) in vertebrates. In addition to long-term influences, T can rapidly increase in males following aggressive male-male encounters. Less is known how females directly influence male T and behavior, though research with humans suggests that sexually attractive females elicit a greater increase in male T and reproductive behavior than unattractive females. In birds, the influence of female attractiveness on male T and behavior is currently untested. We hypothesized that T and courtship behavior in male zebra finches would correlate with female attractiveness. We used red leg bands to make females "attractive" and green bands to make them "unattractive" (unbanded females were controls) as previous research suggests that zebra finches prefer red colors over green in mating contexts. We collected blood from males before and after "speed-dating" trials to measure changes in plasma T and analyzed male courtship behaviors from trial video recordings. The likelihood of plasma T increasing after a trial was significantly greater in males who were with red-banded females compared to control females, suggesting males may find them more attractive than green or control females. Additionally, independent of band color, males who exhibited greater T differences initiated courtship sooner and spent more time closest to females. However, courtship initiation and time spent near females were not correlated with band color. Overall, our results suggest that female attractiveness can influence male reproductive physiology, but the presence of a female may trigger male courtship behavior.
ContributorsBero-Buell, Brianna Danielle (Author) / McGraw, Kevin (Thesis director) / Deviche, Pierre (Committee member) / Ligon, Russell (Committee member) / Barrett, The Honors College (Contributor) / School of Life Sciences (Contributor)
Created2014-05
137464-Thumbnail Image.png
Description
Historically, the study of cognition has focused on species-specific learning, memory, problem-solving and decision-making capabilities, and emphasis was placed on the few high-performing individuals who successfully completed cognitive tasks. Studies often deemed the success of a small fraction of individuals as suggestive of the cognitive capacity of the entire species.

Historically, the study of cognition has focused on species-specific learning, memory, problem-solving and decision-making capabilities, and emphasis was placed on the few high-performing individuals who successfully completed cognitive tasks. Studies often deemed the success of a small fraction of individuals as suggestive of the cognitive capacity of the entire species. Recently though, interest in individual variation in cognitive ability within species has increased. This interest has emerged concomitantly with studies of variation in animal personalities (i.e. behavioral syndromes). Cognitive ability may be closely tied to personality because the mechanisms by which an individual perceives and uses environmental input (cognition) should influence how that individual consistently responds to various ecological demands (personality). However, empirical support for links between animal cognition and behavioral syndromes is currently lacking. I examined individual variation in cognition and personality in male veiled chameleons, Chamaeleo calyptratus. I considered three axes of personality (aggression, activity, and exploratory behavior) and cognition in a foraging context using visual cues − specifically, the ability to associate a color with a food reward. I found that aggression was positively correlated with the proportion of correct choices and number of consecutive correct choices. Also, one measure of exploration (the number of vines touched in a novel environment) was correlated negatively with the proportion of correct choices and positively with the number of consecutive incorrect decisions. My investigation suggests that more aggressive, less exploratory chameleons were more successful learners, and that there exists a shared pathway between these personality traits and cognitive ability.
ContributorsBruemmer, Sarah Adele (Author) / McGraw, Kevin (Thesis director) / Rutowski, Ronald (Committee member) / Ligon, Russell (Committee member) / Barrett, The Honors College (Contributor) / School of Human Evolution and Social Change (Contributor) / School of Life Sciences (Contributor)
Created2013-05
136429-Thumbnail Image.png
Description
Urbanization exposes wildlife to many unfamiliar environmental conditions, including the presence of novel structures and food sources. Adapting to or thriving within such anthropogenic modifications may involve cognitive skills, whereby animals come to solve novel problems while navigating, foraging, etc. The increased presence of humans in urban areas is an

Urbanization exposes wildlife to many unfamiliar environmental conditions, including the presence of novel structures and food sources. Adapting to or thriving within such anthropogenic modifications may involve cognitive skills, whereby animals come to solve novel problems while navigating, foraging, etc. The increased presence of humans in urban areas is an additional environmental challenge that may potentially impact cognitive performance in wildlife. To date, there has been little experimental investigation into how human disturbance affects problem solving in animals from urban and rural areas. Urban animals may show superior cognitive performance in the face of human disturbance, due to familiarity with benign human presence, or rural animals may show greater cognitive performance in response to the heightened stress of unfamiliar human presence. Here, I studied the relationship between human disturbance, urbanization, and the ability to solve a novel foraging problem in wild-caught juvenile house finches (Haemorhous mexicanus). This songbird is a successful urban dweller and native to the deserts of the southwestern United States. In captivity, finches captured from both urban and rural populations were presented with a novel foraging task (sliding a lid covering their typical food dish) and then exposed to regular periods of high or low human disturbance over several weeks before they were again presented with the task. I found that rural birds exposed to frequent human disturbance showed reduced task performance compared to human-disturbed urban finches. This result is consistent with the hypothesis that acclimation to human presence protects urban birds from reduced cognition, unlike rural birds. Some behaviors related to solving the problem (e.g. pecking at and eying the dish) also differed between urban and rural finches, possibly indicating that urban birds were less neophobic and more exploratory than rural ones. However, these results were unclear. Overall, these findings suggest that urbanization and acclimation to human presence can strongly predict avian response to novelty and cognitive challenges.
ContributorsCook, Meghan Olivia (Author) / McGraw, Kevin (Thesis director) / Bimonte-Nelson, Heather (Committee member) / Weaver, Melinda (Committee member) / Barrett, The Honors College (Contributor) / School of Life Sciences (Contributor)
Created2015-05
149574-Thumbnail Image.png
Description
Water affinity and condensation on Si-based surfaces is investigated to address the problem of fogging on silicone intraocular lenses (IOL) during cataract surgery, using Si(100), silica (SiO2) and polydimethylsiloxane (PDMS) silicone (SiOC2H6)n. Condensation is described by two step nucleation and growth where roughness controls heterogeneous nucleation of droplets followed by

Water affinity and condensation on Si-based surfaces is investigated to address the problem of fogging on silicone intraocular lenses (IOL) during cataract surgery, using Si(100), silica (SiO2) and polydimethylsiloxane (PDMS) silicone (SiOC2H6)n. Condensation is described by two step nucleation and growth where roughness controls heterogeneous nucleation of droplets followed by Ostwald ripening. Wetting on hydrophilic surfaces consists of continuous aqueous films while hydrophobic surfaces exhibit fogging with discrete droplets. Si-based surfaces with wavelength above 200 nm exhibit fogging during condensation. Below 200 nm, surfaces are found to wet during condensation. Water affinity of Si-based surfaces is quantified via the surface free energy (SFE) using Sessile drop contact angle analysis, the Young-Dupré equation, and Van Oss theory. Topography is analyzed using tapping mode atomic force microscopy (TMAFM). Polymer adsorption and ion beam modification of materials (IBMM) can modify surface topography, composition, and SFE, and alter water affinity of the Si-based surfaces we studied. Wet adsorption of hydroxypropyl methylcellulose (HPMC) C32H60O19 with areal densities ranging from 1018 atom/cm2 to 1019 atom/cm2 characterized via Rutherford backscattering spectrometry (RBS), allows for the substrate to adopt the topography of the HPMC film and its hydrophilic properties. The HPMC surface composition maintains a bulk stoichiometric ratio as confirmed by 4.265 MeV 12C(α, α)12C and 3.045 MeV 16O(α, α)16O, and 2.8 MeV He++ elastic recoil detection (ERD) of hydrogen. Both PIXE and RBS methods give comparable areal density results of polymer films on Si(100), silica, and PDMS silicone substrates. The SFE and topography of PDMS silicone polymers used for IOLs can also be modified by IBMM. IBMM of HPMC cellulose occurs during IBA as well. Damage curves and ERD are shown to characterize surface desorption accurately during IBMM so that ion beam damage can be accounted for during analysis of polymer areal density and composition. IBMM of Si(100)-SiO2 ordered interfaces also induces changes of SFE, as ions disorder surface atoms. The SFE converges for all surfaces, hydrophobic and hydrophilic, as ions alter electrochemical properties of the surface via atomic and electronic displacements.
ContributorsXing, Qian (Author) / Herbots, Nicole (Thesis advisor) / Culbertson, Robert (Thesis advisor) / Chamberlin, Ralph (Committee member) / Treacy, Michael (Committee member) / Smith, David (Committee member) / Arizona State University (Publisher)
Created2011
136267-Thumbnail Image.png
Description
Rock Doves (Columba livia), also known as pigeons, are a common sight to city dwellers around the world. Often overlooked as urban pests, these birds have intriguing iridescent coloration on their necks that has been the subject of few studies. Previous studies have documented the multimodal reflectance spectra of the

Rock Doves (Columba livia), also known as pigeons, are a common sight to city dwellers around the world. Often overlooked as urban pests, these birds have intriguing iridescent coloration on their necks that has been the subject of few studies. Previous studies have documented the multimodal reflectance spectra of the iridescence and the keratin cortex microstructures responsible for those properties, but do not address questions about the biological context of this coloration. In this study, I explore the factors that affect how this directional signal might appear to intended receivers (assumed to be females). Pigeon neck feathers were obtained from captive-raised birds and measured for reflectance values at numerous angles in the hemisphere above the feather to obtain a directional reflectance distribution. Each feather was mounted individually, and measurements were taken at a consistent location on the feather using a spectrophotometer; the collector was positioned directly above the feather, while we moved the light source in both azimuth and elevation on a Carden arm to simulate changes in pigeon movements during courtship. Depending on the elevation and azimuth of the light source, pigeon neck feathers shift in appearance from green to purple, with an accompanying shift in the location and intensity of reflectance peaks. Additionally, this unique coloration is due to multiple reflectance peaks in the avian vision field between 300 and 700nm. These data coupled with qualitative behavioral observations of Rock Dove courtship inform our understanding of how the color signal is displayed and how it appears to a potential mate; as a female observes the movements in a male courtship display, properties of the iridescence utilize multiple viewing angles to create a dynamic color array.
ContributorsFankhauser, Kaci Lynn (Author) / Rutowski, Ronald (Thesis director) / McGraw, Kevin (Committee member) / McBeath, Michael (Committee member) / Barrett, The Honors College (Contributor) / School of Human Evolution and Social Change (Contributor) / School of Life Sciences (Contributor)
Created2015-05
Description
“Tell It to the Frogs: Fukushima’s nuclear disaster and its impact on the Japanese Tree Frog” is a representation of the work from Giraudeau et. al’s “Carotenoid distribution in wild Japanese tree frogs (Hyla japonica) exposed to ionizing radiation in Fukushima.” This paper looked to see if carotenoid levels in

“Tell It to the Frogs: Fukushima’s nuclear disaster and its impact on the Japanese Tree Frog” is a representation of the work from Giraudeau et. al’s “Carotenoid distribution in wild Japanese tree frogs (Hyla japonica) exposed to ionizing radiation in Fukushima.” This paper looked to see if carotenoid levels in the tree frog’s vocal sac, liver, and blood were affected by radiation from Fukushima’s power plant explosion. Without carotenoids, the pigment that gives the frogs their orange color on their necks, their courtship practices would be impacted and would not be as able to show off their fitness to potential mates. The artwork inspired by this research displayed the tree frog’s degradation over time due to radiation, starting with normal life and ending with their death and open on the table. The sculptures also pinpoint where the carotenoids were being measured with a brilliant orange glaze. Through ceramic hand building, the artist created larger than life frogs in hopes to elicit curiosity about them and their plight. While the paper did not conclude any changes in the frog’s physiology after 18 months of exposure, there are still questions that are left unanswered. Why did these frogs not have any reaction? Could there be any effects after more time has passed? Is radiation leakage as big of a problem as previously thought? The only way to get the answers to these questions is to be aware of these amphibians, the circumstances that led them to be involved, and continued research on them and radiation.
ContributorsWesterfield, Savannah (Author) / Beiner, Susan (Thesis director) / McGraw, Kevin (Committee member) / School of Life Sciences (Contributor) / School of Art (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
133514-Thumbnail Image.png
Description
Among the most ornate animal traits in nature are the angle-dependent (i.e. iridescent) structural colors of many birds, beetles, and butterflies. Though we now have a solid understanding of the mechanisms, function, and evolution of these features in several groups, less attention has been paid to the potential for angle-dependent

Among the most ornate animal traits in nature are the angle-dependent (i.e. iridescent) structural colors of many birds, beetles, and butterflies. Though we now have a solid understanding of the mechanisms, function, and evolution of these features in several groups, less attention has been paid to the potential for angle-dependent reflectance in otherwise matte-appearing (i.e. not thought to be structurally colored) tissues. Here for the first time we describe non-iridescent angle-dependent coloration from the tail and wing feathers of several parrot species (Psittaciformes). We employed a novel approach \u2014 by calculating chromatic and achromatic contrasts (in just noticeable differences, JNDs) of straight and angled measurements of the same feather patch \u2014 to test for perceptually relevant angle-dependent changes in coloration on dorsal and ventral feather surfaces. We found, among the 15 parrot species studied, significant angle dependence for nearly all parameters (except chromatic JNDs on the ventral side of wing feathers). We then measured microstructural features on each side of feathers, including size and color of barbs and barbules, to attempt to predict interspecific variation in degree of angle-dependent reflectance. We found that hue, saturation, and brightness of feather barbs, barbule saturation, and barb:barbule coverage ratio were the strongest predictors of angle-dependent coloration. Interestingly, there was significant phylogenetic signal in only one of the seven angle-dependence models tested. These findings deepen our views on the importance of microscopic feather features in the production of directional animal coloration, especially in tissues that appear to be statically colored.
ContributorsReed, Steven Andrew (Co-author) / McGraw, Kevin (Thesis director) / Pratt, Stephen (Committee member) / Simpson, Richard (Committee member) / School of Mathematical and Statistical Sciences (Contributor) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05