Matching Items (173)
152156-Thumbnail Image.png
Description
Once perceived as an unimportant occurrence in living organisms, cell degeneration was reconfigured as an important biological phenomenon in development, aging, health, and diseases in the twentieth century. This dissertation tells a twentieth-century history of scientific investigations on cell degeneration, including cell death and aging. By describing four central developments

Once perceived as an unimportant occurrence in living organisms, cell degeneration was reconfigured as an important biological phenomenon in development, aging, health, and diseases in the twentieth century. This dissertation tells a twentieth-century history of scientific investigations on cell degeneration, including cell death and aging. By describing four central developments in cell degeneration research with the four major chapters, I trace the emergence of the degenerating cell as a scientific object, describe the generations of a variety of concepts, interpretations and usages associated with cell death and aging, and analyze the transforming influences of the rising cell degeneration research. Particularly, the four chapters show how the changing scientific practices about cellular life in embryology, cell culture, aging research, and molecular biology of Caenorhabditis elegans shaped the interpretations about cell degeneration in the twentieth-century as life-shaping, limit-setting, complex, yet regulated. These events created and consolidated important concepts in life sciences such as programmed cell death, the Hayflick limit, apoptosis, and death genes. These cases also transformed the material and epistemic practices about the end of cellular life subsequently and led to the formations of new research communities. The four cases together show the ways cell degeneration became a shared subject between molecular cell biology, developmental biology, gerontology, oncology, and pathology of degenerative diseases. These practices and perspectives created a special kind of interconnectivity between different fields and led to a level of interdisciplinarity within cell degeneration research by the early 1990s.
ContributorsJiang, Lijing (Author) / Maienschein, Jane (Thesis advisor) / Laubichler, Manfred (Thesis advisor) / Hurlbut, James (Committee member) / Creath, Richard (Committee member) / White, Michael (Committee member) / Arizona State University (Publisher)
Created2013
152057-Thumbnail Image.png
Description
Possible selves researchers have uncovered many issues associated with the current possible selves measures. For instance, one of the most famous possible selves measures, Oyserman (2004)'s open-ended possible selves, has proven to be difficult to score reliably and also involves laborious scoring procedures. Therefore, this study was initiated to develo

Possible selves researchers have uncovered many issues associated with the current possible selves measures. For instance, one of the most famous possible selves measures, Oyserman (2004)'s open-ended possible selves, has proven to be difficult to score reliably and also involves laborious scoring procedures. Therefore, this study was initiated to develop a close-ended measure, called the Persistent Academic Possible Selves Scale for Adolescents (PAPSS), that meets these challenges. The PAPSS integrates possible selves theories (personal and social identities) and educational psychology (self-regulation in social cognitive theory). Four hundred and ninety five junior high and high school students participated in the validation study of the PAPSS. I conducted confirmatory factor analyses (CFA) to compare fit for a baseline model to the hypothesized models using Mplus version 7 (Muthén & Muthén, 2012). A weighted least square means and a variance adjusted (WLSMV) estimation method was used for handling multivariate nonnormality of ordered categorical data. The final PAPSS has validity evidence based on the internal structure. The factor structure is composed of three goal-driven factors, one self-regulated factor that focuses on peers, and four self-regulated factors that emphasize the self. Oyserman (2004)'s open-ended questionnaire was used for exploring the evidence of convergent validity. Many issues regarding Oyserman (2003)'s instructions were found during the coding process of academic plausibility. It was complicated to detect hidden academic possible selves and strategies from non-academic possible selves and strategies. Also, interpersonal related strategies were over weighted in the scoring process compared to interpersonal related academic possible selves. The study results uncovered that all of the academic goal-related factors in the PAPSS are significantly related to academic plausibility in a positive direction. However, self-regulated factors in the PAPSS are not. The correlation results between the self-regulated factors and academic plausibility do not provide the evidence of convergent validity. Theoretical and methodological explanations for the test results are discussed.
ContributorsLee, Ji Eun (Author) / Husman, Jenefer (Thesis advisor) / Green, Samuel (Committee member) / Millsap, Roger (Committee member) / Brem, Sarah (Committee member) / Arizona State University (Publisher)
Created2013
152419-Thumbnail Image.png
Description
Science, Technology, Engineering & Mathematics (STEM) careers have been touted as critical to the success of our nation and also provide important opportunities for access and equity of underrepresented minorities (URM's). Community colleges serve a diverse population and a large number of undergraduates currently enrolled in college, they are well

Science, Technology, Engineering & Mathematics (STEM) careers have been touted as critical to the success of our nation and also provide important opportunities for access and equity of underrepresented minorities (URM's). Community colleges serve a diverse population and a large number of undergraduates currently enrolled in college, they are well situated to help address the increasing STEM workforce demands. Geoscience is a discipline that draws great interest, but has very low representation of URM's as majors. What factors influence a student's decision to major in the geosciences and are community college students different from research universities in what factors influence these decisions? Through a survey-design mixed with classroom observations, structural equation model was employed to predict a student's intent to persist in introductory geology based on student expectancy for success in their geology class, math self-concept, and interest in the content. A measure of classroom pedagogy was also used to determine if instructor played a role in predicting student intent to persist. The targeted population was introductory geology students participating in the Geoscience Affective Research NETwork (GARNET) project, a national sampling of students in enrolled in introductory geology courses. Results from SEM analysis indicated that interest was the primary predictor in a students intent to persist in the geosciences for both community college and research university students. In addition, self-efficacy appeared to be mediated by interest within these models. Classroom pedagogy impacted how much interest was needed to predict intent to persist, in which as classrooms became more student centered, less interest was required to predict intent to persist. Lastly, math self-concept did not predict student intent to persist in the geosciences, however, it did share variance with self-efficacy and control of learning beliefs, indicating it may play a moderating effect on student interest and self-efficacy. Implications of this work are that while community college students and research university students are different in demographics and content preparation, student-centered instruction continues to be the best way to support student's interest in the sciences. Future work includes examining how math self-concept may play a role in longitudinal persistence in the geosciences.
ContributorsKraft, Katrien J. van der Hoeven (Author) / Husman, Jenefer (Thesis advisor) / Semken, Steven (Thesis advisor) / Baker, Dale R. (Committee member) / McConnell, David (Committee member) / Arizona State University (Publisher)
Created2014
152315-Thumbnail Image.png
Description
ABSTRACT Whole genome sequencing (WGS) and whole exome sequencing (WES) are two comprehensive genomic tests which use next-generation sequencing technology to sequence most of the 3.2 billion base pairs in a human genome (WGS) or many of the estimated 22,000 protein-coding genes in the genome (WES). The promises offered from

ABSTRACT Whole genome sequencing (WGS) and whole exome sequencing (WES) are two comprehensive genomic tests which use next-generation sequencing technology to sequence most of the 3.2 billion base pairs in a human genome (WGS) or many of the estimated 22,000 protein-coding genes in the genome (WES). The promises offered from WGS/WES are: to identify suspected yet unidentified genetic diseases, to characterize the genomic mutations in a tumor to identify targeted therapeutic agents and, to predict future diseases with the hope of promoting disease prevention strategies and/or offering early treatment. Promises notwithstanding, sequencing a human genome presents several interrelated challenges: how to adequately analyze, interpret, store, reanalyze and apply an unprecedented amount of genomic data (with uncertain clinical utility) to patient care? In addition, genomic data has the potential to become integral for improving the medical care of an individual and their family, years after a genome is sequenced. Current informed consent protocols do not adequately address the unique challenges and complexities inherent to the process of WGS/WES. This dissertation constructs a novel informed consent process for individuals considering WGS/WES, capable of fulfilling both legal and ethical requirements of medical consent while addressing the intricacies of WGS/WES, ultimately resulting in a more effective consenting experience. To better understand components of an effective consenting experience, the first part of this dissertation traces the historical origin of the informed consent process to identify the motivations, rationales and institutional commitments that sustain our current consenting protocols for genetic testing. After understanding the underlying commitments that shape our current informed consent protocols, I discuss the effectiveness of the informed consent process from an ethical and legal standpoint. I illustrate how WGS/WES introduces new complexities to the informed consent process and assess whether informed consent protocols proposed for WGS/WES address these complexities. The last section of this dissertation describes a novel informed consent process for WGS/WES, constructed from the original ethical intent of informed consent, analysis of existing informed consent protocols, and my own observations as a genetic counselor for what constitutes an effective consenting experience.
ContributorsHunt, Katherine (Author) / Hurlbut, J. Benjamin (Thesis advisor) / Robert, Jason S. (Thesis advisor) / Maienschein, Jane (Committee member) / Northfelt, Donald W. (Committee member) / Marchant, Gary (Committee member) / Ellison, Karin (Committee member) / Arizona State University (Publisher)
Created2013
152595-Thumbnail Image.png
Description
The semiconductor field of Photovoltaics (PV) has experienced tremendous growth, requiring curricula to consider ways to promote student success. One major barrier to success students may face when learning PV is the development of misconceptions. The purpose of this work was to determine the presence and prevalence of misconceptions students

The semiconductor field of Photovoltaics (PV) has experienced tremendous growth, requiring curricula to consider ways to promote student success. One major barrier to success students may face when learning PV is the development of misconceptions. The purpose of this work was to determine the presence and prevalence of misconceptions students may have for three PV semiconductor phenomena; Diffusion, Drift and Excitation. These phenomena are emergent, a class of phenomena that have certain characteristics. In emergent phenomena, the individual entities in the phenomena interact and aggregate to form a self-organizing pattern that can be observed at a higher level. Learners develop a different type of misconception for these phenomena, an emergent misconception. Participants (N=41) completed a written protocol. The pilot study utilized half of these protocols (n = 20) to determine the presence of both general and emergent misconceptions for the three phenomena. Once the presence of both general and emergent misconceptions was confirmed, all protocols (N=41) were analyzed to determine the presence and prevalence of general and emergent misconceptions, and to note any relationships among these misconceptions (full study). Through written protocol analysis of participants' responses, numerous codes emerged from the data for both general and emergent misconceptions. General and emergent misconceptions were found in 80% and 55% of participants' responses, respectively. General misconceptions indicated limited understandings of chemical bonding, electricity and magnetism, energy, and the nature of science. Participants also described the phenomena using teleological, predictable, and causal traits, indicating participants had misconceptions regarding the emergent aspects of the phenomena. For both general and emergent misconceptions, relationships were observed between similar misconceptions within and across the three phenomena, and differences in misconceptions were observed across the phenomena. Overall, the presence and prevalence of both general and emergent misconceptions indicates that learners have limited understandings of the physical and emergent mechanisms for the phenomena. Even though additional work is required, the identification of specific misconceptions can be utilized to enhance semiconductor and PV course content. Specifically, changes can be made to curriculum in order to limit the formation of misconceptions as well as promote conceptual change.
ContributorsNelson, Katherine G (Author) / Brem, Sarah K. (Thesis advisor) / Mckenna, Ann F (Thesis advisor) / Hilpert, Jonathan (Committee member) / Honsberg, Christiana (Committee member) / Husman, Jenefer (Committee member) / Arizona State University (Publisher)
Created2014
152605-Thumbnail Image.png
Description
In 1997, developmental biologist Michael Richardson compared his research team's embryo photographs to Ernst Haeckel's 1874 embryo drawings and called Haeckel's work noncredible.Science soon published <“>Haeckel's Embryos: Fraud Rediscovered,<”> and Richardson's comments further reinvigorated criticism of Haeckel by others with articles in The American Biology Teacher, <“>Haeckel's Embryos and Evolution:

In 1997, developmental biologist Michael Richardson compared his research team's embryo photographs to Ernst Haeckel's 1874 embryo drawings and called Haeckel's work noncredible.Science soon published <“>Haeckel's Embryos: Fraud Rediscovered,<”> and Richardson's comments further reinvigorated criticism of Haeckel by others with articles in The American Biology Teacher, <“>Haeckel's Embryos and Evolution: Setting the Record Straight <”> and the New York Times, <“>Biology Text Illustrations more Fiction than Fact.<”> Meanwhile, others emphatically stated that the goal of comparative embryology was not to resurrect Haeckel's work. At the center of the controversy was Haeckel's no-longer-accepted idea of recapitulation. Haeckel believed that the development of an embryo revealed the adult stages of the organism's ancestors. Haeckel represented this idea with drawings of vertebrate embryos at similar developmental stages. This is Haeckel's embryo grid, the most common of all illustrations in biology textbooks. Yet, Haeckel's embryo grids are much more complex than any textbook explanation. I examined 240 high school biology textbooks, from 1907 to 2010, for embryo grids. I coded and categorized the grids according to accompanying discussion of (a) embryonic similarities (b) recapitulation, (c) common ancestors, and (d) evolution. The textbooks show changing narratives. Embryo grids gained prominence in the 1940s, and the trend continued until criticisms of Haeckel reemerged in the late 1990s, resulting in (a) grids with fewer organisms and developmental stages or (b) no grid at all. Discussion about embryos and evolution dropped significantly.
ContributorsWellner, Karen L (Author) / Maienschein, Jane (Thesis advisor) / Ellison, Karin D. (Committee member) / Creath, Richard (Committee member) / Robert, Jason S. (Committee member) / Laubichler, Manfred D. (Committee member) / Arizona State University (Publisher)
Created2014
152351-Thumbnail Image.png
Description
Lung Cancer Alliance, a nonprofit organization, released the "No One Deserves to Die" advertising campaign in June 2012. The campaign visuals presented a clean, simple message to the public: the stigma associated with lung cancer drives marginalization of lung cancer patients. Lung Cancer Alliance (LCA) asserts that negative public attitude

Lung Cancer Alliance, a nonprofit organization, released the "No One Deserves to Die" advertising campaign in June 2012. The campaign visuals presented a clean, simple message to the public: the stigma associated with lung cancer drives marginalization of lung cancer patients. Lung Cancer Alliance (LCA) asserts that negative public attitude toward lung cancer stems from unacknowledged moral judgments that generate 'stigma.' The campaign materials are meant to expose and challenge these common public category-making processes that occur when subconsciously evaluating lung cancer patients. These processes involve comparison, perception of difference, and exclusion. The campaign implies that society sees suffering of lung cancer patients as indicative of moral failure, thus, not warranting assistance from society, which leads to marginalization of the diseased. Attributing to society a morally laden view of the disease, the campaign extends this view to its logical end and makes it explicit: lung cancer patients no longer deserve to live because they themselves caused the disease (by smoking). This judgment and resulting marginalization is, according to LCA, evident in the ways lung cancer patients are marginalized relative to other diseases via minimal research funding, high- mortality rates and low awareness of the disease. Therefore, society commits an injustice against those with lung cancer. This research analyzes the relationship between disease, identity-making, and responsibilities within society as represented by this stigma framework. LCA asserts that society understands lung cancer in terms of stigma, and advocates that society's understanding of lung cancer should be shifted from a stigma framework toward a medical framework. Analysis of identity-making and responsibility encoded in both frameworks contributes to evaluation of the significance of reframing this disease. One aim of this thesis is to explore the relationship between these frameworks in medical sociology. The results show a complex interaction that suggest trading one frame for another will not destigmatize the lung cancer patient. Those interactions cause tangible harms, such as high mortality rates, and there are important implications for other communities that experience a stigmatized disease.
ContributorsCalvelage, Victoria (Author) / Hurlbut, J. Benjamin (Thesis advisor) / Maienschein, Jane (Committee member) / Ellison, Karin (Committee member) / Arizona State University (Publisher)
Created2013
153477-Thumbnail Image.png
Description
Blind and visually impaired individuals have historically demonstrated a low participation in the fields of science, engineering, mathematics, and technology (STEM). This low participation is reflected in both their education and career choices. Despite the establishment of the Americans with Disabilities Act (ADA) and the Individuals with Disabilities Education Act

Blind and visually impaired individuals have historically demonstrated a low participation in the fields of science, engineering, mathematics, and technology (STEM). This low participation is reflected in both their education and career choices. Despite the establishment of the Americans with Disabilities Act (ADA) and the Individuals with Disabilities Education Act (IDEA), blind and visually impaired (BVI) students continue to academically fall below the level of their sighted peers in the areas of science and math. Although this deficit is created by many factors, this study focuses on the lack of adequate accessible image based materials. Traditional methods for creating accessible image materials for the vision impaired have included detailed verbal descriptions accompanying an image or conversion into a simplified tactile graphic. It is very common that no substitute materials will be provided to students within STEM courses because they are image rich disciplines and often include a large number images, diagrams and charts. Additionally, images that are translated into text or simplified into basic line drawings are frequently inadequate because they rely on the interpretations of resource personnel who do not have expertise in STEM. Within this study, a method to create a new type of tactile 3D image was developed using High Density Polyethylene (HDPE) and Computer Numeric Control (CNC) milling. These tactile image boards preserve high levels of detail when compared to the original print image. To determine the discernibility and effectiveness of tactile images, these customizable boards were tested in various

university classrooms as well as in participation studies which included BVI and sighted students. Results from these studies indicate that tactile images are discernable and were found to improve performance in lab exercises as much as 60% for those with visual impairment. Incorporating tactile HDPE 3D images into a classroom setting was shown to increase the interest, participation and performance of BVI students suggesting that this type of 3D tactile image should be incorporated into STEM classes to increase the participation of these students and improve the level of training they receive in science and math.
ContributorsGonzales, Ashleigh (Author) / Baluch, Debra P (Thesis advisor) / Maienschein, Jane (Committee member) / Ellison, Karin (Committee member) / Arizona State University (Publisher)
Created2015
152891-Thumbnail Image.png
Description
Leo Kanner first described autism in his 1943 article in Nervous Child titled "Autistic Disturbances of Affective Contact". Throughout, he describes the eleven children with autism in exacting detail. In the closing paragraphs, the parents of autistic children are described as emotionally cold. Yet, he concludes that the condition as

Leo Kanner first described autism in his 1943 article in Nervous Child titled "Autistic Disturbances of Affective Contact". Throughout, he describes the eleven children with autism in exacting detail. In the closing paragraphs, the parents of autistic children are described as emotionally cold. Yet, he concludes that the condition as he described it was innate. Since its publication, his observations about parents have been a source of controversy surrounding the original definition of autism.

Thus far, histories about autism have pointed to descriptions of parents of autistic children with the claim that Kanner abstained from assigning them causal significance. Understanding the theoretical context in which Kanner's practice was embedded is essential to sorting out how he could have held such seemingly contrary views simultaneously.

This thesis illustrates that Kanner held an explicitly descriptive frame of reference toward his eleven child patients, their parents, and autism. Adolf Meyer, his mentor at Johns Hopkins, trained him to make detailed life-charts under a clinical framework called psychobiology. By understanding that Kanner was a psychobiologist by training, I revisit the original definition of autism as a category of mental disorder and restate its terms. This history illuminates the theoretical context of autism's discovery and has important implications for the first definition of autism amidst shifting theories of childhood mental disorders and the place of the natural sciences in defining them.
ContributorsCohmer, Sean (Author) / Hurlbut, James B (Thesis advisor) / Maienschein, Jane (Committee member) / Laubichler, Manfred (Committee member) / Arizona State University (Publisher)
Created2014
153133-Thumbnail Image.png
Description
The primary objective of this study was to develop the Perceived Control of the Attribution Process Scale (PCAPS), a measure of metacognitive beliefs of causality, or a perceived control of the attribution process. The PCAPS included two subscales: perceived control of attributions (PCA), and awareness of the motivational consequences of

The primary objective of this study was to develop the Perceived Control of the Attribution Process Scale (PCAPS), a measure of metacognitive beliefs of causality, or a perceived control of the attribution process. The PCAPS included two subscales: perceived control of attributions (PCA), and awareness of the motivational consequences of attributions (AMC). Study 1 (a pilot study) generated scale items, explored suitable measurement formats, and provided initial evidence for the validity of an event-specific version of the scale. Study 2 achieved several outcomes; Study 2a provided strong evidence for the validity and reliability of the PCA and AMC subscales, and showed that they represent separate constructs. Study 2b demonstrated the predictive validity of the scale and provided support for the perceived control of the attribution process model. This study revealed that those who adopt these beliefs are significantly more likely to experience autonomy and well-being. Study 2c revealed that these constructs are influenced by context, yet they lead to adaptive outcomes regardless of this contextual-specificity. These findings suggest that there are individual differences in metacognitive beliefs of causality and that these differences have measurable motivational implications.
ContributorsFishman, Evan Jacob (Author) / Nakagawa, Kathryn (Committee member) / Husman, Jenefer (Committee member) / Graham, Steve (Committee member) / Moore, Elsie (Committee member) / Arizona State University (Publisher)
Created2014