Matching Items (106)
150163-Thumbnail Image.png
Description
With the advent of the X-ray free-electron laser (XFEL), an opportunity has arisen to break the nexus between radiation dose and spatial resolution in diffractive imaging, by outrunning radiation damage altogether when using single X-ray pulses so brief that they terminate before atomic motion commences. This dissertation concerns the application

With the advent of the X-ray free-electron laser (XFEL), an opportunity has arisen to break the nexus between radiation dose and spatial resolution in diffractive imaging, by outrunning radiation damage altogether when using single X-ray pulses so brief that they terminate before atomic motion commences. This dissertation concerns the application of XFELs to biomolecular imaging in an effort to overcome the severe challenges associated with radiation damage and macroscopic protein crystal growth. The method of femtosecond protein nanocrystallography (fsPNX) is investigated, and a new method for extracting crystallographic structure factors is demonstrated on simulated data and on the first experimental fsPNX data obtained at an XFEL. Errors are assessed based on standard metrics familiar to the crystallography community. It is shown that resulting structure factors match the quality of those measured conventionally, at least to 9 angstrom resolution. A new method for ab-initio phasing of coherently-illuminated nanocrystals is then demonstrated on simulated data. The method of correlated fluctuation small-angle X-ray scattering (CFSAXS) is also investigated as an alternative route to biomolecular structure determination, without the use of crystals. It is demonstrated that, for a constrained two-dimensional geometry, a projection image of a single particle can be formed, ab-initio and without modeling parameters, from measured diffracted intensity correlations arising from disordered ensembles of identical particles illuminated simultaneously. The method is demonstrated experimentally, based on soft X-ray diffraction from disordered but identical nanoparticles, providing the first experimental proof-of-principle result. Finally, the fundamental limitations of CFSAXS is investigated through both theory and simulations. It is found that the signal-to-noise ratio (SNR) for CFSAXS data is essentially independent of the number of particles exposed in each diffraction pattern. The dependence of SNR on particle size and resolution is considered, and realistic estimates are made (with the inclusion of solvent scatter) of the SNR for protein solution scattering experiments utilizing an XFEL source.
ContributorsKirian, Richard A (Author) / Spence, John C. H. (Committee member) / Doak, R. Bruce (Committee member) / Weierstall, Uwe (Committee member) / Bennett, Peter (Committee member) / Treacy, Michael M. J. (Committee member) / Arizona State University (Publisher)
Created2011
150076-Thumbnail Image.png
Description
One of the most important issues in femtosecond free electron laser X-ray diraction is to reconstruct the 3D charge density of molecule from a mass of diraction snapshots. In order to determine the orientation of single molecule from diraction patterns, we rst determine the moments and products of inertia of

One of the most important issues in femtosecond free electron laser X-ray diraction is to reconstruct the 3D charge density of molecule from a mass of diraction snapshots. In order to determine the orientation of single molecule from diraction patterns, we rst determine the moments and products of inertia of this from 2D experiment data (diraction patterns or EM images to obtain the elements of the inertia tensor. If diraction patterns from uniformly random orientations or some preferred orientations are collected, the principal axes of the molecule can be extracted, together with the Euler angles which relate the principal axes of the molecule to the laboratory frame axes. This is achieved by nding the maximum and minimum values for the measured moments from many single-molecule patterns. Simulations for GroEL protein indicates that the calculation of the autocorrelation help eliminate the Poisson noise in Cryo- EM images and can make correct orientation determination. The eect of water jacket surrounding the protein molecule is studied based on molecular dynamics simulation result. The intensities from water and interference is found to suppress those from protein itself. A method is proposed and applied to the simulation data to show the possibility for it to overcome the water background problem. The scattering between Bragg re ections from nanocrystals is used to aid solution of the phase problem. We describe a method for reconstructing the charge density of a typical molecule within a single unit cell, if suciently nely-sampled diraction data are available from many nanocrystals of dierent sizes lying in the same orientations without knowledge of the distribution of particle size or requiring atomic-resolution data. Triple correlation of the diraction patterns are made use of to reconiii
ContributorsWang, Xiaoyu (Author) / Spence, John C.H. (Thesis advisor) / Schmidt, Kevin (Committee member) / Doak, R. Bruce (Committee member) / Weierstall, Uwe (Committee member) / Ros, Robert (Committee member) / Arizona State University (Publisher)
Created2011
150535-Thumbnail Image.png
Description
Infrared photodetectors, used in applications for sensing and imaging, such as military target recognition, chemical/gas detection, and night vision enhancement, are predominantly comprised of an expensive II-VI material, HgCdTe. III-V type-II superlattices (SLs) have been studied as viable alternatives for HgCdTe due to the SL advantages over HgCdTe: greater control

Infrared photodetectors, used in applications for sensing and imaging, such as military target recognition, chemical/gas detection, and night vision enhancement, are predominantly comprised of an expensive II-VI material, HgCdTe. III-V type-II superlattices (SLs) have been studied as viable alternatives for HgCdTe due to the SL advantages over HgCdTe: greater control of the alloy composition, resulting in more uniform materials and cutoff wavelengths across the wafer; stronger bonds and structural stability; less expensive substrates, i.e., GaSb; mature III-V growth and processing technologies; lower band-to-band tunneling due to larger electron effective masses; and reduced Auger recombination enabling operation at higher temperatures and longer wavelengths. However, the dark current of InAs/Ga1-xInxSb SL detectors is higher than that of HgCdTe detectors and limited by Shockley-Read-Hall (SRH) recombination rather than Auger recombination. This dissertation work focuses on InAs/InAs1-xSbx SLs, another promising alternative for infrared laser and detector applications due to possible lower SRH recombination and the absence of gallium, which simplifies the SL interfaces and growth processes. InAs/InAs1-xSbx SLs strain-balanced to GaSb substrates were designed for the mid- and long-wavelength infrared (MWIR and LWIR) spectral ranges and were grown using MOCVD and MBE by various groups. Detailed characterization using high-resolution x-ray diffraction, atomic force microscopy, photoluminescence (PL), and photoconductance revealed the excellent structural and optical properties of the MBE materials. Two key material parameters were studied in detail: the valence band offset (VBO) and minority carrier lifetime. The VBO between InAs and InAs1-xSbx strained on GaSb with x = 0.28 - 0.41 was best described by Qv = ÄEv/ÄEg = 1.75 ± 0.03. Time-resolved PL experiments on a LWIR SL revealed a lifetime of 412 ns at 77 K, one order of magnitude greater than that of InAs/Ga1-xInxSb LWIR SLs due to less SRH recombination. MWIR SLs also had 100's of ns lifetimes that were dominated by radiative recombination due to shorter periods and larger wave function overlaps. These results allow InAs/InAs1-xSbx SLs to be designed for LWIR photodetectors with minority carrier lifetimes approaching those of HgCdTe, lower dark currents, and higher operating temperatures.
ContributorsSteenbergen, Elizabeth H (Author) / Zhang, Yong-Hang (Thesis advisor) / Brown, Gail J. (Committee member) / Vasileska, Dragica (Committee member) / Johnson, Shane R. (Committee member) / Arizona State University (Publisher)
Created2012
130319-Thumbnail Image.png
Description

Serial femtosecond crystallography requires reliable and efficient delivery of fresh crystals across the beam of an X-ray free-electron laser over the course of an experiment. We introduce a double-flow focusing nozzle to meet this challenge, with significantly reduced sample consumption, while improving jet stability over previous generations of nozzles. We

Serial femtosecond crystallography requires reliable and efficient delivery of fresh crystals across the beam of an X-ray free-electron laser over the course of an experiment. We introduce a double-flow focusing nozzle to meet this challenge, with significantly reduced sample consumption, while improving jet stability over previous generations of nozzles. We demonstrate its use to determine the first room-temperature structure of RNA polymerase II at high resolution, revealing new structural details. Moreover, the double flow-focusing nozzles were successfully tested with three other protein samples and the first room temperature structure of an extradiol ring-cleaving dioxygenase was solved by utilizing the improved operation and characteristics of these devices.

ContributorsOberthuer, Dominik (Author) / Knoska, Juraj (Author) / Wiedorn, Max O. (Author) / Beyerlein, Kenneth R. (Author) / Bushnell, David A. (Author) / Kovaleva, Elena G. (Author) / Heymann, Michael (Author) / Gumprecht, Lars (Author) / Kirian, Richard (Author) / Barty, Anton (Author) / Mariani, Valerio (Author) / Tolstikova, Aleksandra (Author) / Adriano, Luigi (Author) / Awel, Salah (Author) / Barthelmess, Miriam (Author) / Dorner, Katerina (Author) / Xavier, P. Lourdu (Author) / Yefanov, Oleksandr (Author) / James, Daniel (Author) / Nelson, Garrett (Author) / Wang, Dingjie (Author) / Calvey, George (Author) / Chen, Yujie (Author) / Schmidt, Andrea (Author) / Szczepek, Michael (Author) / Frielingsdorf, Stefan (Author) / Lenz, Oliver (Author) / Snell, Edward (Author) / Robinson, Philip J. (Author) / Sarler, Bozidar (Author) / Belsak, Grega (Author) / Macek, Marjan (Author) / Wilde, Fabian (Author) / Aquila, Andrew (Author) / Boutet, Sebastien (Author) / Liang, Mengning (Author) / Hunter, Mark S. (Author) / Scheerer, Patrick (Author) / Lipscomb, John D. (Author) / Weierstall, Uwe (Author) / Kornberg, Roger D. (Author) / Spence, John (Author) / Pollack, Lois (Author) / Chapman, Henry N. (Author) / Bajt, Sasa (Author) / College of Liberal Arts and Sciences (Contributor) / Department of Physics (Contributor)
Created2017-03-16
130320-Thumbnail Image.png
Description

X-ray free-electron lasers provide novel opportunities to conduct single particle analysis on nanoscale particles. Coherent diffractive imaging experiments were performed at the Linac Coherent Light Source (LCLS), SLAC National Laboratory, exposing single inorganic core-shell nanoparticles to femtosecond hard-X-ray pulses. Each facetted nanoparticle consisted of a crystalline gold core and a

X-ray free-electron lasers provide novel opportunities to conduct single particle analysis on nanoscale particles. Coherent diffractive imaging experiments were performed at the Linac Coherent Light Source (LCLS), SLAC National Laboratory, exposing single inorganic core-shell nanoparticles to femtosecond hard-X-ray pulses. Each facetted nanoparticle consisted of a crystalline gold core and a differently shaped palladium shell. Scattered intensities were observed up to about 7 nm resolution. Analysis of the scattering patterns revealed the size distribution of the samples, which is consistent with that obtained from direct real-space imaging by electron microscopy. Scattering patterns resulting from single particles were selected and compiled into a dataset which can be valuable for algorithm developments in single particle scattering research.

ContributorsLi, Xuanxuan (Author) / Chiu, Chun-Ya (Author) / Wang, Hsiang-Ju (Author) / Kassemeyer, Stephan (Author) / Botha, Sabine (Author) / Shoeman, Robert L. (Author) / Lawrence, Robert (Author) / Kupitz, Christopher (Author) / Kirian, Richard (Author) / James, Daniel (Author) / Wang, Dingjie (Author) / Nelson, Garrett (Author) / Messerschmidt, Marc (Author) / Boutet, Sebastien (Author) / Williams, Garth J. (Author) / Hartman, Elisabeth (Author) / Jafarpour, Aliakbar (Author) / Foucar, Lutz M. (Author) / Barty, Anton (Author) / Chapman, Henry (Author) / Liang, Mengning (Author) / Menzel, Andreas (Author) / Wang, Fenglin (Author) / Basu, Shibom (Author) / Fromme, Raimund (Author) / Doak, R. Bruce (Author) / Fromme, Petra (Author) / Weierstall, Uwe (Author) / Huang, Michael H. (Author) / Spence, John (Author) / Schlichting, Ilme (Author) / Hogue, Brenda (Author) / Liu, Haiguang (Author) / ASU Biodesign Center Immunotherapy, Vaccines and Virotherapy (Contributor) / Biodesign Institute (Contributor) / Applied Structural Discovery (Contributor) / College of Liberal Arts and Sciences (Contributor) / School of Molecular Sciences (Contributor) / Department of Physics (Contributor) / School of Life Sciences (Contributor)
Created2017-04-11
130311-Thumbnail Image.png
Description
Serial femtosecond X-ray crystallography (SFX) using an X-ray free electron laser (XFEL) is a recent advancement in structural biology for solving crystal structures of challenging membrane proteins, including G-protein coupled receptors (GPCRs), which often only produce microcrystals. An XFEL delivers highly intense X-ray pulses of femtosecond duration short enough to

Serial femtosecond X-ray crystallography (SFX) using an X-ray free electron laser (XFEL) is a recent advancement in structural biology for solving crystal structures of challenging membrane proteins, including G-protein coupled receptors (GPCRs), which often only produce microcrystals. An XFEL delivers highly intense X-ray pulses of femtosecond duration short enough to enable the collection of single diffraction images before significant radiation damage to crystals sets in. Here we report the deposition of the XFEL data and provide further details on crystallization, XFEL data collection and analysis, structure determination, and the validation of the structural model. The rhodopsin-arrestin crystal structure solved with SFX represents the first near-atomic resolution structure of a GPCR-arrestin complex, provides structural insights into understanding of arrestin-mediated GPCR signaling, and demonstrates the great potential of this SFX-XFEL technology for accelerating crystal structure determination of challenging proteins and protein complexes.
ContributorsZhou, X. Edward (Author) / Gao, Xiang (Author) / Barty, Anton (Author) / Kang, Yanyong (Author) / He, Yuanzheng (Author) / Liu, Wei (Author) / Ishchenko, Andrii (Author) / White, Thomas A. (Author) / Yefanov, Oleksandr (Author) / Han, Gye Won (Author) / Xu, Qingping (Author) / de Waal, Parker W. (Author) / Suino-Powell, Kelly M. (Author) / Boutet, Sebastien (Author) / Williams, Garth J. (Author) / Wang, Meitian (Author) / Li, Dianfan (Author) / Caffrey, Martin (Author) / Chapman, Henry N. (Author) / Spence, John (Author) / Fromme, Petra (Author) / Weierstall, Uwe (Author) / Stevens, Raymond C. (Author) / Cherezov, Vadim (Author) / Melcher, Karsten (Author) / Xu, H. Eric (Author) / College of Liberal Arts and Sciences (Contributor) / School of Molecular Sciences (Contributor) / Biodesign Institute (Contributor) / Applied Structural Discovery (Contributor) / Department of Physics (Contributor)
Created2016-04-12
130313-Thumbnail Image.png
Description
Diacylglycerol kinase catalyses the ATP-dependent conversion of diacylglycerol to phosphatidic acid in the plasma membrane of Escherichia coli. The small size of this integral membrane trimer, which has 121 residues per subunit, means that available protein must be used economically to craft three catalytic and substrate-binding sites centred about the

Diacylglycerol kinase catalyses the ATP-dependent conversion of diacylglycerol to phosphatidic acid in the plasma membrane of Escherichia coli. The small size of this integral membrane trimer, which has 121 residues per subunit, means that available protein must be used economically to craft three catalytic and substrate-binding sites centred about the membrane/cytosol interface. How nature has accomplished this extraordinary feat is revealed here in a crystal structure of the kinase captured as a ternary complex with bound lipid substrate and an ATP analogue. Residues, identified as essential for activity by mutagenesis, decorate the active site and are rationalized by the ternary structure. The γ-phosphate of the ATP analogue is positioned for direct transfer to the primary hydroxyl of the lipid whose acyl chain is in the membrane. A catalytic mechanism for this unique enzyme is proposed. The active site architecture shows clear evidence of having arisen by convergent evolution.
ContributorsLi, Dianfan (Author) / Stansfeld, Phillip J. (Author) / Sansom, Mark S. P. (Author) / Keogh, Aaron (Author) / Vogeley, Lutz (Author) / Howe, Nicole (Author) / Lyons, Joseph A. (Author) / Aragao, David (Author) / Fromme, Petra (Author) / Fromme, Raimund (Author) / Basu, Shibom (Author) / Grotjohann, Ingo (Author) / Kupitz, Christopher (Author) / Rendek, Kimberley (Author) / Weierstall, Uwe (Author) / Zatsepin, Nadia (Author) / Cherezov, Vadim (Author) / Liu, Wei (Author) / Bandaru, Sateesh (Author) / English, Niall J. (Author) / Gati, Cornelius (Author) / Barty, Anton (Author) / Yefanov, Oleksandr (Author) / Chapman, Henry N. (Author) / Diederichs, Kay (Author) / Messerschmidt, Marc (Author) / Boutet, Sebastien (Author) / Williams, Garth J. (Author) / Seibert, M. Marvin (Author) / Caffrey, Martin (Author) / College of Liberal Arts and Sciences (Contributor) / School of Molecular Sciences (Contributor) / Biodesign Institute (Contributor) / Applied Structural Discovery (Contributor) / Department of Physics (Contributor)
Created2015-12-17
130318-Thumbnail Image.png
Description
Serial femtosecond crystallography (SFX) using X-ray free-electron laser sources is an emerging method with considerable potential for time-resolved pump-probe experiments. Here we present a lipidic cubic phase SFX structure of the light-driven proton pump bacteriorhodopsin (bR) to 2.3 Å resolution and a method to investigate protein dynamics with modest sample requirement.

Serial femtosecond crystallography (SFX) using X-ray free-electron laser sources is an emerging method with considerable potential for time-resolved pump-probe experiments. Here we present a lipidic cubic phase SFX structure of the light-driven proton pump bacteriorhodopsin (bR) to 2.3 Å resolution and a method to investigate protein dynamics with modest sample requirement. Time-resolved SFX (TR-SFX) with a pump-probe delay of 1 ms yields difference Fourier maps compatible with the dark to M state transition of bR. Importantly, the method is very sample efficient and reduces sample consumption to about 1 mg per collected time point. Accumulation of M intermediate within the crystal lattice is confirmed by time-resolved visible absorption spectroscopy. This study provides an important step towards characterizing the complete photocycle dynamics of retinal proteins and demonstrates the feasibility of a sample efficient viscous medium jet for TR-SFX.
ContributorsNogly, Przemyslaw (Author) / Panneels, Valerie (Author) / Nelson, Garrett (Author) / Gati, Cornelius (Author) / Kimura, Tetsunari (Author) / Milne, Christopher (Author) / Milathianaki, Despina (Author) / Kubo, Minoru (Author) / Wu, Wenting (Author) / Conrad, Chelsie (Author) / Coe, Jesse (Author) / Bean, Richard (Author) / Zhao, Yun (Author) / Bath, Petra (Author) / Dods, Robert (Author) / Harimoorthy, Rajiv (Author) / Beyerlein, Kenneth R. (Author) / Rheinberger, Jan (Author) / James, Daniel (Author) / Deponte, Daniel (Author) / Li, Chufeng (Author) / Sala, Leonardo (Author) / Williams, Garth J. (Author) / Hunter, Mark S. (Author) / Koglin, Jason E. (Author) / Berntsen, Peter (Author) / Nango, Eriko (Author) / Iwata, So (Author) / Chapman, Henry N. (Author) / Fromme, Petra (Author) / Frank, Matthias (Author) / Abela, Rafael (Author) / Boutet, Sebastien (Author) / Barty, Anton (Author) / White, Thomas A. (Author) / Weierstall, Uwe (Author) / Spence, John (Author) / Neutze, Richard (Author) / Schertler, Gebhard (Author) / Standfuss, Jorg (Author) / College of Liberal Arts and Sciences (Contributor) / Department of Physics (Contributor) / Department of Chemistry and Biochemistry (Contributor) / Biodesign Institute (Contributor) / Applied Structural Discovery (Contributor) / School of Molecular Sciences (Contributor)
Created2016-08-22
132505-Thumbnail Image.png
Description
Fashion is an inherently political and reflective medium for the daily ramblings and revolutions of a society. Much of the time the influence is subtle. Silhouettes and fabrics reflect different stances on conservatism, on sex, on the degrees to which we fetishize luxury, and on infinite other attitudes of an

Fashion is an inherently political and reflective medium for the daily ramblings and revolutions of a society. Much of the time the influence is subtle. Silhouettes and fabrics reflect different stances on conservatism, on sex, on the degrees to which we fetishize luxury, and on infinite other attitudes of an era. Other times the influence is extremely direct, with text printed on the clothing that explicitly articulates a current societal dynamic. I began exploring fashion in 2016, as the country had reached an unprecedented and linguistically weaponized divide.

While taking a fashion technology course under the instruction of Galina Mihaleva, I developed a tracksuit incorporating concealed LED displays that are capable of scrolling customizable text on the sides of the garment. I expanded on this futuristic execution of politically charged clothes by utilizing a more realistic application of the LED technology in the Bouis Vuitton project. This project is a collection of six white vinyl bags with semi-flexible LED displays projecting revolutionary slogans through the vinyl textile.

The bags act as an appropriate housing for technology that is intended for significantly longer use, as bags have a longer lifespan in wardrobes than clothes and return to trend more frequently. The production investment in the technology is more equitable to the investment in the production of a bag and facilitates the wearer’s broadcasting of concise messages. The result is a collection of functional, utilitarian pieces with a clean, futuristic look and a mixed modern and vintage silhouette scrolling pro-revolutionary messages.

Broadcasting the knock-off name ‘BOUIS VUITTON’, I’ve inserted only my first initial into the reputable luxury company and paired it with slogans: ‘EAT THE RICH’ and ‘HEADS WILL ROLL’. The collection articulates a sense of nihilism felt by the youngest generations growing up on the outside of a very exclusive economic and political sphere. Three upcycled vintage luggage pieces evoke associations with the white American upper-class society of the 1960s. The luggage pieces were retrofitted in white vinyl and white-enameled metal fixtures. Three additional soft bags made of the same material reflect a utilitarian style of functional bags on trend with Spring/Summer 2019 streetwear. For the runway presentation of the bags, the models are dressed in navy-colored Dickies boiler suits, white retro-style Fila sneakers, and white ascots reminiscent of the historical male ruffled cravat. The contradictions of iconic silhouettes from both upper and lower-class American fashion history further the juxtaposition of anti-capitalist slogans posted on luxury goods.

Bouis Vuitton: Bags for the Revolution is intended to embody an unapologetic disregard for established wealth and political power in the most public of venues: the sidewalk, the mall, the high and the low-income neighborhoods – wherever people are wearing clothes. Fashion is the modern protest that requires no permit, and the new poster is a luxury bag.
ContributorsViton, Benjamin Douglas (Author) / Sewell, Dennita (Thesis director) / Mihaleva, Galina (Committee member) / School of Art (Contributor) / College of Integrative Sciences and Arts (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
Description
X-ray Free Electron Lasers (XFELs) are used for diffractive x-ray imaging of the structure of many biological particles, such as viruses and proteins. The ultimate goal for XFEL-based microscopy is atomic resolution images of non-crystalline particles. However, data collection efficiency as well as the limited amount of measurement time given

X-ray Free Electron Lasers (XFELs) are used for diffractive x-ray imaging of the structure of many biological particles, such as viruses and proteins. The ultimate goal for XFEL-based microscopy is atomic resolution images of non-crystalline particles. However, data collection efficiency as well as the limited amount of measurement time given annually to researchers, such high-resolution images are presently impossible to attain. Here, we consider two potential solutions to the single-particle hit rate problem; the first looks at applying static electric fields to existing aerodynamic particle injectors, and the second looks at the viability of using time-varying electric fields associated with ion traps to create high-density regions of particles. For the static solution, we looked at applying a constant electric potential to the nozzle, as well as applying a high voltage to a ring electrode in close proximity to a grounded nozzle. We considered the breakdown field strength of the helium gas used to determine how closely the ring electrode could be placed without creating an arc that could potentially destroy expensive equipment. Then, we considered the possibility of using electrodynamic ion traps to increase particle densities. We first characterized how charged particles behave in oscillating electric fields using a simple electrode geometry. Using the general results from this, we then constructed a rudimentary ion trap to test if our experiment agreed with the theory. Finally, we conducted a literature review to determine what particle densities other scientists have been able to measure using ion traps. We then compared existing ion traps to what we expect from the nozzle injectors to determine which method may be the better solution.
ContributorsBradshaw, Layne Nicholas (Author) / Kirian, Richard (Thesis director) / Weierstall, Uwe (Committee member) / Department of Physics (Contributor, Contributor) / School of Earth and Space Exploration (Contributor) / Barrett, The Honors College (Contributor)
Created2017-05