Matching Items (283)
Description

Many nanotechnology-related principles can be demonstrated in a way that is understandable for elementary school-aged children through at-home activity videos. As a part of a National Science Foundation funded grant, Dr. Qing Hua Wang’s research group at Arizona State University developed a nanotechnology-related activity website, Nano@Home, for students. In conjunction

Many nanotechnology-related principles can be demonstrated in a way that is understandable for elementary school-aged children through at-home activity videos. As a part of a National Science Foundation funded grant, Dr. Qing Hua Wang’s research group at Arizona State University developed a nanotechnology-related activity website, Nano@Home, for students. In conjunction with ASU’s virtual Open Door 2021, this creative project aimed to create activity videos based on the Nano@Home website to make the activities more interactive for students.

ContributorsOliver, Ruth Kaylyn (Author) / Wang, Qing Hua (Thesis director) / Krause, Stephen (Committee member) / Materials Science and Engineering Program (Contributor, Contributor) / Watts College of Public Service & Community Solut (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
147871-Thumbnail Image.png
Description

Supported catalytic nanoparticles undergo rapid structural transformations faster than many transmission electron microscopes (TEMs) can track. This is the case with platinum nanoparticles supported on cerium oxide (Pt/CeO2) in a CO and O2 gaseous environment. By furthering our understanding of the structural dynamics of the Pt/CeO2 system, improved catalyst design

Supported catalytic nanoparticles undergo rapid structural transformations faster than many transmission electron microscopes (TEMs) can track. This is the case with platinum nanoparticles supported on cerium oxide (Pt/CeO2) in a CO and O2 gaseous environment. By furthering our understanding of the structural dynamics of the Pt/CeO2 system, improved catalyst design principles may be derived to enhance the efficiency of this catalyst. Developing static models of a 2 nm Pt nanoparticle supported on CeO2 and simulating TEM images of the models was found to create similar images to those seen in experimental TEM time-resolved series of the system. Rotations of static models on a ceria support provides a way to understand the experimental samples in three dimensions, which is difficult in two dimensional TEM images. This project expands the possibilities of interpreting TEM images of catalytic systems.

ContributorsBlock, Claire (Author) / Crozier, Peter (Thesis director) / Muhich, Christopher (Committee member) / Materials Science and Engineering Program (Contributor, Contributor) / Watts College of Public Service & Community Solut (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
148173-Thumbnail Image.png
Description

There is surprisingly little scientific literature describing whether a hockey slap shot positively or negatively transfers to a driving golf swing. Golf and hockey use a similar kinematic sequence to send the ball / puck towards a target, but does that directly translate to positive skill transfer between the two

There is surprisingly little scientific literature describing whether a hockey slap shot positively or negatively transfers to a driving golf swing. Golf and hockey use a similar kinematic sequence to send the ball / puck towards a target, but does that directly translate to positive skill transfer between the two sports, or are there other important factors that could result in a negative skill transfer? The aim of this study is to look further into the two kinematic sequences and determine their intertask skill transfer type. A field experiment was conducted, following a specific research design, in order to compare performance between two groups, one being familiar with the skill that may transfer (hockey slapshot) and the other group being unfamiliar. Both groups had no experience in the skill being tested (driving golf swing) and various data was collected as all of the subjects performed 10 golf swings. The results of the data analysis showed that the group with experience in hockey had a higher variability of ball distance and ball speed. There are many factors of a hockey slapshot that are likely to develop a negative intertask skill transfer, resulting in this group's high inconsistency when performing a golf swing. On the other hand, the group with hockey experience also had higher mean club speed, showing that some aspects of the hockey slapshot resulted in a positive skill transfer, aiding their ability to perform a golf swing.

ContributorsLarson, Finn Althea (Author) / Peterson, Daniel (Thesis director) / Cryer, Michael (Committee member) / Materials Science and Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
148044-Thumbnail Image.png
Description

Research has shown that being a female athlete in a male-dominated sports world is an oppressive burden, yet the experiences of being a black female athlete have been largely ignored. To combat this lack of attention, this paper invokes communication and feminist theorist Bell Hook's concept of moving black women

Research has shown that being a female athlete in a male-dominated sports world is an oppressive burden, yet the experiences of being a black female athlete have been largely ignored. To combat this lack of attention, this paper invokes communication and feminist theorist Bell Hook's concept of moving black women from margin to center to reveal the intersectional oppression of gender and racial narratives that they face in sports. By outlining the difference between white and black femininity and studying media portrayals of popular black female athletes such as Venus and Serena Williams and others, it becomes obvious how black women are typecast into certain social and athletic roles. This research also includes an auto-ethnographic component of my own experience as a black female lacrosse player at the NCAA Division I level. This component functions as a point of comparison and contrast of the ideas and concepts I discuss. Lastly, I offer recommendations and suggestions as to how to empower young black female athletes and retain them in a variety of sports. The goal of my thesis is to place special attention onto black women in an area which there is an extreme lack of representation. My own empirical research has led me to the conclusion that not only is such a discussion important, but it is absolutely necessary. If we are to fight back against hegemonic social structures such as racism and gender roles in the sports world, we must first understand what we are up against. My thesis gives us a glimpse into our imposing opponents, and I hope that future research continues this trend so that black female athletes like myself may one day be considered an athlete in the same sense that our white peers are.

ContributorsWright, Daniela Casselle (Author) / Edson, Belle (Thesis director) / Zanin, Alaina (Committee member) / Hugh Downs School of Human Communication (Contributor) / School of Social Transformation (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
Description

Soiled: An Environmental Podcast is a six episode series that addresses common environmental topics and debunks myths that surround those topics.

ContributorsTurner, Natalie Ann (Co-author) / Kuta, Tiffany (Co-author) / Jones, Cassity (Co-author) / Boyer, Mackenzie (Thesis director) / Ward, Kristen (Committee member) / Materials Science and Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
Description

The objective of this experiment was to investigate the correlation between the starting pitch angle of a Dragon Boat paddle and the ensuing total stress and force on the paddle during the first stroke. During the first stroke (i.e., starting at rest) the stress on the paddle can be equated

The objective of this experiment was to investigate the correlation between the starting pitch angle of a Dragon Boat paddle and the ensuing total stress and force on the paddle during the first stroke. During the first stroke (i.e., starting at rest) the stress on the paddle can be equated with the force output. To do this, a paddle was modified with a strain gauge and other equipment, and tests were run varying the pitch angle. The results showed that while the most positive starting angle yielded the highest stress and force on the paddle, there was no discernible trend correlating the angle to the stress. Further experimentation must be run to determine which other factors influence the stress.

ContributorsHeitmann, Kevin Matthew (Author) / Takahashi, Timothy (Thesis director) / Kasbaoui, Mohamed (Committee member) / Materials Science and Engineering Program (Contributor) / Mechanical and Aerospace Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
148326-Thumbnail Image.png
Description

Stress for college students is nothing new and as more kids go to college the number of cases are on the rise. This issue is apparent at colleges across the nation including Arizona State University. StreetWise aims to help students prevent or appropriately deal with stress through interactive lessons teaching

Stress for college students is nothing new and as more kids go to college the number of cases are on the rise. This issue is apparent at colleges across the nation including Arizona State University. StreetWise aims to help students prevent or appropriately deal with stress through interactive lessons teaching students life skills, social skills, and emotional intelligence.<br/>In order to prove the value of our service, StreetWise conducted a survey that asked students about their habits, thoughts on stress, and their future. Students from Arizona State University were surveyed with questions on respondent background, employment, number one stressor, preferred learning method, and topics that students were interested in learning. We found that students’ number one stressor was school but was interested in learning skills that would prepare them for their future after graduation. We used the results to make final decisions so that StreetWise could offer lessons that students would get the most value out of. This led to us conducting a second survey which included mock ups of the website, examples of interactive lesson plans, and an overview of the app. Students from the first survey were surveyed in addition to new respondents. This survey was intended for us to ensure that our service would maintain its value to students with the aesthetic and interface that we envisioned.

ContributorsWard, William Henry (Co-author) / Ahir, Hiral (Co-author) / Compton, Katherine (Co-author) / Byrne, Jared (Thesis director) / Hall, Rick (Committee member) / Materials Science and Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
136547-Thumbnail Image.png
Description
The introduction of novel information technology within contemporary healthcare settings presents a critical juncture for the industry and thus lends itself to the importance of better understanding the impact of this emerging "health 2.0" landscape. Simply, how such technology may affect the healthcare system is still not fully realized, despite

The introduction of novel information technology within contemporary healthcare settings presents a critical juncture for the industry and thus lends itself to the importance of better understanding the impact of this emerging "health 2.0" landscape. Simply, how such technology may affect the healthcare system is still not fully realized, despite the ever-growing need to adopt it in order to serve a growing patient population. Thus, two pertinent questions are posed: is HIT useful and practical and, if so, what is the best way to implement it? This study examined the clinical implementation of specific instances of health information technology (HIT) so as to weigh its benefits and risks to ultimately construct a proposal for successful widespread adoption. Due to the poignancy of information analysis within HIT, Information Measurement Theory (IMT) was used to measure the effectiveness of current HIT systems as well as to elucidate improvements for future implementation. The results indicate that increased transparency, attention to patient-focused approaches and proper IT training will not only allow HIT to better serve the community, but will also decrease inefficient healthcare expenditure.
ContributorsMaietta, Myles Anthony (Author) / Kashiwagi, Dean (Thesis director) / Kashiwagi, Jacob (Committee member) / Barrett, The Honors College (Contributor) / Department of Psychology (Contributor) / School of Life Sciences (Contributor)
Created2015-05
136548-Thumbnail Image.png
Description
The value of data in the construction industry is driven by the actual worth or usefulness the data can provide. The revolutionary method of Best Value Performance Information Procurement System implemented into the industry by the Performance Based Studies Research Group at ASU optimizes the value of data. By simplifying

The value of data in the construction industry is driven by the actual worth or usefulness the data can provide. The revolutionary method of Best Value Performance Information Procurement System implemented into the industry by the Performance Based Studies Research Group at ASU optimizes the value of data. By simplifying the details and complexity of a construction project through dominant and logical thinking, the Best Value system delivers efficient, non-risk success. The Best Value model's implementation into industry projects is observed in the PBSRG Minnesota projects in order to improve data collection and metric analysis. The Minnesota projects specifically have an issue with delivering Best Value transparency, the notion that the details of project data should be used to support dominant ideas. By improving and simplifying the data collection tools of PBSRG, Best Value transparency can be achieved more easily and effective, in turn improved the Best Value system.
ContributorsMisiak, Erik Richard (Author) / Kashiwagi, Dean (Thesis director) / Kashiwagi, Jacob (Committee member) / Barrett, The Honors College (Contributor) / Mechanical and Aerospace Engineering Program (Contributor)
Created2015-05
136556-Thumbnail Image.png
Description
Due to the environmental problems caused by global warming, it has become necessary to reduce greenhouse gas emissions across the planet. Biofuels, such as ethanol, have proven to release cleaner emissions when combusted. However, large scale production of these alcohols is uneconomical and inefficient due to limitations in standard separation

Due to the environmental problems caused by global warming, it has become necessary to reduce greenhouse gas emissions across the planet. Biofuels, such as ethanol, have proven to release cleaner emissions when combusted. However, large scale production of these alcohols is uneconomical and inefficient due to limitations in standard separation processes, the most common being distillation. Pervaporation is a novel separation technique that utilizes a specialized membrane to separate multicomponent solutions. In this research project, pervaporation utilizing ZIF-71/PDMS mixed matrix membranes are investigated to see their ability to recover ethanol from an ethanol/aqueous separation. Membranes with varying nanoparticle concentrations were created and their performances were analyzed. While the final results indicate that no correlation exists between nanoparticle weight percentage and selectivity, this technology is still a promising avenue for biofuel production. Future work will be conducted to improve this existing process and enhance membrane selectivity.
ContributorsHoward, Chelsea Elizabeth (Author) / Lind, Mary Laura (Thesis director) / Nielsen, David (Committee member) / Greenlee, Lauren (Committee member) / Barrett, The Honors College (Contributor) / Chemical Engineering Program (Contributor) / Materials Science and Engineering Program (Contributor)
Created2015-05