Matching Items (209)
148162-Thumbnail Image.png
Description

Surveys have shown that several hundred billion weather forecasts are obtained by the United States public each year, and that weather news is one of the most consumed topics in the media. This indicates that the forecast provides information that is significant to the public, and that the public utilizes

Surveys have shown that several hundred billion weather forecasts are obtained by the United States public each year, and that weather news is one of the most consumed topics in the media. This indicates that the forecast provides information that is significant to the public, and that the public utilizes details associated with it to inform aspects of their life. Phoenix, Arizona is a dry, desert region that experiences a monsoon season and extreme heat. How then, does the weather forecast influence the way Phoenix residents make decisions? This paper aims to draw connections between the weather forecast, decision making, and people who live in a desert environment. To do this, a ten-minute survey was deployed through Amazon Mechanical Turk (MTurk) in which 379 respondents were targeted. The survey asks 45 multiple choice and ranking questions categorized into four sections: obtainment of the forecast, forecast variables of interest, informed decision making based on unique weather variables, and demographics. This research illuminates how residents in the Phoenix metropolitan area use the local weather forecast for decision-making on daily activities, and the main meteorological factors that drive those decisions.

ContributorsMarturano, Julia (Author) / Middel, Ariane (Thesis director) / Schneider, Florian (Committee member) / School of Geographical Sciences and Urban Planning (Contributor, Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
Description
Laboratory automation systems have seen a lot of technological advances in recent times. As a result, the software that is written for them are becoming increasingly sophisticated. Existing software architectures and standards are targeted to a wider domain of software development and need to be customized in order to use

Laboratory automation systems have seen a lot of technological advances in recent times. As a result, the software that is written for them are becoming increasingly sophisticated. Existing software architectures and standards are targeted to a wider domain of software development and need to be customized in order to use them for developing software for laboratory automation systems. This thesis proposes an architecture that is based on existing software architectural paradigms and is specifically tailored to developing software for a laboratory automation system. The architecture is based on fairly autonomous software components that can be distributed across multiple computers. The components in the architecture make use of asynchronous communication methodologies that are facilitated by passing messages between one another. The architecture can be used to develop software that is distributed, responsive and thread-safe. The thesis also proposes a framework that has been developed to implement the ideas proposed by the architecture. The framework is used to develop software that is scalable, distributed, responsive and thread-safe. The framework currently has components to control very commonly used laboratory automation devices such as mechanical stages, cameras, and also to do common laboratory automation functionalities such as imaging.
ContributorsKuppuswamy, Venkataramanan (Author) / Meldrum, Deirdre (Thesis advisor) / Collofello, James (Thesis advisor) / Sarjoughian, Hessam S. (Committee member) / Johnson, Roger (Committee member) / Arizona State University (Publisher)
Created2012
151177-Thumbnail Image.png
Description
Single cell analysis has become increasingly important in understanding disease onset, progression, treatment and prognosis, especially when applied to cancer where cellular responses are highly heterogeneous. Through the advent of single cell computerized tomography (Cell-CT), researchers and clinicians now have the ability to obtain high resolution three-dimensional (3D) reconstructions of

Single cell analysis has become increasingly important in understanding disease onset, progression, treatment and prognosis, especially when applied to cancer where cellular responses are highly heterogeneous. Through the advent of single cell computerized tomography (Cell-CT), researchers and clinicians now have the ability to obtain high resolution three-dimensional (3D) reconstructions of single cells. Yet to date, no live-cell compatible version of the technology exists. In this thesis, a microfluidic chip with the ability to rotate live single cells in hydrodynamic microvortices about an axis parallel to the optical focal plane has been demonstrated. The chip utilizes a novel 3D microchamber design arranged beneath a main channel creating flow detachment into the chamber, producing recirculating flow conditions. Single cells are flowed through the main channel, held in the center of the microvortex by an optical trap, and rotated by the forces induced by the recirculating fluid flow. Computational fluid dynamics (CFD) was employed to optimize the geometry of the microchamber. Two methods for the fabrication of the 3D microchamber were devised: anisotropic etching of silicon and backside diffuser photolithography (BDPL). First, the optimization of the silicon etching conditions was demonstrated through design of experiment (DOE). In addition, a non-conventional method of soft-lithography was demonstrated which incorporates the use of two positive molds, one of the main channel and the other of the microchambers, compressed together during replication to produce a single ultra-thin (<200 µm) negative used for device assembly. Second, methods for using thick negative photoresists such as SU-8 with BDPL have been developed which include a new simple and effective method for promoting the adhesion of SU-8 to glass. An assembly method that bonds two individual ultra-thin (<100 µm) replications of the channel and the microfeatures has also been demonstrated. Finally, a pressure driven pumping system with nanoliter per minute flow rate regulation, sub-second response times, and < 3% flow variability has been designed and characterized. The fabrication and assembly of this device is inexpensive and utilizes simple variants of conventional microfluidic fabrication techniques, making it easily accessible to the single cell analysis community.
ContributorsMyers, Jakrey R (Author) / Meldrum, Deirdre (Thesis advisor) / Johnson, Roger (Committee member) / Frakes, David (Committee member) / Arizona State University (Publisher)
Created2012
136410-Thumbnail Image.png
Description
Introduction/Purpose: the purpose of this study was to explore the perception of care after stillbirth and the use of physical activity and/or mindful approaches (e.g., yoga) to cope with grief in women of racial/ethnic minority who have experienced stillbirth.
Methods: This was an exploratory qualitative research study. Participants were African

Introduction/Purpose: the purpose of this study was to explore the perception of care after stillbirth and the use of physical activity and/or mindful approaches (e.g., yoga) to cope with grief in women of racial/ethnic minority who have experienced stillbirth.
Methods: This was an exploratory qualitative research study. Participants were African American, Hispanic, Asian, and American Indian women, between the ages of 26 and 38, who have experienced stillbirth within the past 3 years. Participants completed a 20-30 minute phone interview.
Results: Fourteen women participated in the study (M age = 31.02 ± 5.97 years; M time since stillbirth = 1.47 ± 0.94 years). Women’s perceptions about physical activity and mindfulness to cope with grief were coded into the following major themes: perception of health care after stillbirth (satisfaction with the level of care provided), recommendations about inter-conception health care from physician (relating to mental, emotional, and physical health), grief (comfort with communicating with the physician), coping mechanisms, perception of the relationship between physical activity and mood, barriers to participating in physical activity (social and behavioral), pre-pregnancy physical activity, and perception of mindful approach (e.g., yoga) as a coping mechanism.
Conclusion: This was the first study to explore perceptions of health care and the use of physical activity and/or mindful approaches (e.g., yoga) to cope with grief after stillbirth in women of racial/ethnic minority. Findings from this study may help inform health care professionals alter their care practices and introduce physical activity and mindfulness based approaches as coping mechanisms to mothers of stillborn babies.
ContributorsArvayo, Jordan Michelle (Author) / Huberty, Jennifer (Thesis director) / Hoffner, Kristin (Committee member) / Barrett, The Honors College (Contributor) / School of Nutrition and Health Promotion (Contributor)
Created2015-05
136476-Thumbnail Image.png
Description
This study examined the effect of an 8-week exercise intervention on functional exercise capacity in adolescents with Down syndrome (DS). Forty participants were randomly assigned to one of three groups: assisted cycling (ACT) (n = 17) where participants experienced at least a 35% increase in their voluntary cycling speed through

This study examined the effect of an 8-week exercise intervention on functional exercise capacity in adolescents with Down syndrome (DS). Forty participants were randomly assigned to one of three groups: assisted cycling (ACT) (n = 17) where participants experienced at least a 35% increase in their voluntary cycling speed through the use of a motor, voluntary cycling (VC) (n = 15) where participants cycled at a self-selected cadence, and no cycling (NC) (n = 8) where participants did not participate in any cycling intervention. In each cycling intervention, each participant completed three, 30 minute cycling sessions per week for a total of eight weeks. The Six-Minute Walk Test (6MWT) was administered prior to and after the 8-week intervention in pre-test and post-test assessment sessions, respectively. Our hypothesis was somewhat supported in that functional exercise capacity improved after ACT as measured by an increase in total number of laps walked, total distance walked, and average walking speed during the 6MWT, when compared to VC or NC.
ContributorsCook, Megan Rey (Author) / Ringenbach, Shannon (Thesis director) / Huberty, Jennifer (Committee member) / Barrett, The Honors College (Contributor) / School of Nutrition and Health Promotion (Contributor)
Created2015-05
137035-Thumbnail Image.png
Description
Objective: Fewer than 50% of female college freshmen meet physical activity (PA) guidelines. Innovative approaches that help college women increase their PA are warranted. The study purpose was to pilot test a magazine-based discussion group for improving PA, self-worth, and nutrition behaviors in freshmen college females. Method: Thirty-seven women (18-20

Objective: Fewer than 50% of female college freshmen meet physical activity (PA) guidelines. Innovative approaches that help college women increase their PA are warranted. The study purpose was to pilot test a magazine-based discussion group for improving PA, self-worth, and nutrition behaviors in freshmen college females. Method: Thirty-seven women (18-20 years) were randomized to intervention (n=17) and control (n=20) groups. The intervention group participated in an 8-week magazine-based discussion group adapted from a previously tested social cognitive theory based intervention, Fit Minded. Excerpts from a popular women's health magazine were discussed during weekly meetings incorporating PA, self-worth and nutrition education. The control group did not attend meetings, but received the magazines. Outcomes and feasibility measures included: self-reported PA, general self-worth, knowledge self-worth, self-efficacy, social support, and daily fruits, vegetables, junk food, sugar-sweetened beverage consumption. Results: Twelve participants from the intervention group attended more than 75% of meetings. A time effect was observed for PA (p=0.001) and family social support (p=0.002). Time x group effects were observed for PA (p=0.001), general self-worth (p=0.04), knowledge self-worth (p=0.03), and daily sugar-sweetened beverage consumption (p=0.03), with the intervention group reporting greater increases in PA, general self-worth and knowledge self-worth and greater decreases in daily sugar-sweetened beverage consumption. Although not significant, the intervention group demonstrated positive trends in self-efficacy, friend social support and fruit and veggie consumption as compared to the control group. Conclusion: A magazine-based discussion group may provide a promising platform to improve PA, self-worth and nutrition behaviors in female college freshmen.
ContributorsPellitteri, Katelyn (Author) / Huberty, Jennifer (Thesis director) / Bruening, Meg (Committee member) / Barrett, The Honors College (Contributor) / T. Denny Sanford School of Social and Family Dynamics (Contributor) / School of Social Transformation (Contributor) / Sandra Day O'Connor College of Law (Contributor)
Created2014-05
141381-Thumbnail Image.png
Description

This study investigates the impact of urban form and landscaping type on the mid-afternoon microclimate in semi-arid Phoenix, Arizona. The goal is to find effective urban form and design strategies to ameliorate temperatures during the summer months. We simulated near-ground air temperatures for typical residential neighborhoods in Phoenix using the

This study investigates the impact of urban form and landscaping type on the mid-afternoon microclimate in semi-arid Phoenix, Arizona. The goal is to find effective urban form and design strategies to ameliorate temperatures during the summer months. We simulated near-ground air temperatures for typical residential neighborhoods in Phoenix using the three-dimensional microclimate model ENVI-met. The model was validated using weather observations from the North Desert Village (NDV) landscape experiment, located on the Arizona State University's Polytechnic campus. The NDV is an ideal site to determine the model's input parameters, since it is a controlled environment recreating three prevailing residential landscape types in the Phoenix metropolitan area (mesic, oasis, and xeric).

After validation, we designed five neighborhoods with different urban forms that represent a realistic cross-section of typical residential neighborhoods in Phoenix. The scenarios follow the Local Climate Zone (LCZ) classification scheme after Stewart and Oke. We then combined the neighborhoods with three landscape designs and, using ENVI-met, simulated microclimate conditions for these neighborhoods for a typical summer day. Results were analyzed in terms of mid-afternoon air temperature distribution and variation, ventilation, surface temperatures, and shading. Findings show that advection is important for the distribution of within-design temperatures and that spatial differences in cooling are strongly related to solar radiation and local shading patterns. In mid-afternoon, dense urban forms can create local cool islands. Our approach suggests that the LCZ concept is useful for planning and design purposes.

ContributorsMiddel, Ariane (Author) / Hab, Kathrin (Author) / Brazel, Anthony J. (Author) / Martin, Chris A. (Author) / Guhathakurta, Subhrajit (Author)
Created2013-12-01
141382-Thumbnail Image.png
Description

The City of Phoenix (Arizona, USA) developed a Tree and Shade Master Plan and a Cool Roofs initiative to ameliorate extreme heat during the summer months in their arid city. This study investigates the impact of the City's heat mitigation strategies on daytime microclimate for a pre-monsoon summer day under

The City of Phoenix (Arizona, USA) developed a Tree and Shade Master Plan and a Cool Roofs initiative to ameliorate extreme heat during the summer months in their arid city. This study investigates the impact of the City's heat mitigation strategies on daytime microclimate for a pre-monsoon summer day under current climate conditions and two climate change scenarios. We assessed the cooling effect of trees and cool roofs in a Phoenix residential neighborhood using the microclimate model ENVI-met. First, using xeric landscaping as a base, we created eight tree planting scenarios (from 0% canopy cover to 30% canopy cover) for the neighborhood to characterize the relationship between canopy cover and daytime cooling benefit of trees. In a second set of simulations, we ran ENVI-met for nine combined tree planting and landscaping scenarios (mesic, oasis, and xeric) with regular roofs and cool roofs under current climate conditions and two climate change projections. For each of the 54 scenarios, we compared average neighborhood mid-afternoon air temperatures and assessed the benefits of each heat mitigation measure under current and projected climate conditions. Findings suggest that the relationship between percent canopy cover and air temperature reduction is linear, with 0.14 °C cooling per percent increase in tree cover for the neighborhood under investigation. An increase in tree canopy cover from the current 10% to a targeted 25% resulted in an average daytime cooling benefit of up to 2.0 °C in residential neighborhoods at the local scale. Cool roofs reduced neighborhood air temperatures by 0.3 °C when implemented on residential homes. The results from this city-specific mitigation project will inform messaging campaigns aimed at engaging the city decision makers, industry, and the public in the green building and urban forestry initiatives.

ContributorsMiddel, Ariane (Author) / Chhetri, Nalini (Author) / Quay, Raymond (Author)
Created2015
141393-Thumbnail Image.png
Description

This study addresses a classic sustainability challenge—the tradeoff between water conservation and temperature amelioration in rapidly growing cities, using Phoenix, Arizona and Portland, Oregon as case studies. An urban energy balance model— LUMPS (Local-Scale Urban Meteorological Parameterization Scheme)—is used to represent the tradeoff between outdoor water use and nighttime cooling

This study addresses a classic sustainability challenge—the tradeoff between water conservation and temperature amelioration in rapidly growing cities, using Phoenix, Arizona and Portland, Oregon as case studies. An urban energy balance model— LUMPS (Local-Scale Urban Meteorological Parameterization Scheme)—is used to represent the tradeoff between outdoor water use and nighttime cooling during hot, dry summer months. Tradeoffs were characterized under three scenarios of land use change and three climate-change assumptions. Decreasing vegetation density reduced outdoor water use but sacrificed nighttime cooling. Increasing vegetated surfaces accelerated nighttime cooling, but increased outdoor water use by ~20%. Replacing impervious surfaces with buildings achieved similar improvements in nighttime cooling with minimal increases in outdoor water use; it was the most water-efficient cooling strategy. The fact that nighttime cooling rates and outdoor water use were more sensitive to land use scenarios than climate-change simulations suggested that cities can adapt to a warmer climate by manipulating land use.

ContributorsGober, Patricia (Author) / Middel, Ariane (Author) / Brazel, Anthony J. (Author) / Myint, Soe (Author) / Chang, Heejun (Author) / Duh, Jiunn-Der (Author) / House-Peters, Lily (Author)
Created2013-05-16
141400-Thumbnail Image.png
Description

Outdoor human comfort is determined for the remodelled downtown of Tempe, Arizona, USA, an acclaimed example of New Urbanist infill. The authors desired to know whether changes were accompanied by more comfortable conditions, especially in hot, dry summer months. The physiological equivalent temperature provided an assessment of year-round outdoor human

Outdoor human comfort is determined for the remodelled downtown of Tempe, Arizona, USA, an acclaimed example of New Urbanist infill. The authors desired to know whether changes were accompanied by more comfortable conditions, especially in hot, dry summer months. The physiological equivalent temperature provided an assessment of year-round outdoor human comfort. Building compactness and tree shade that became part of the changes in the downtown provided more overall daytime human comfort than open nearby streets; however some downtown sites were less comfortable at night, but below 40°C, a threshold for human comfort in this desert environment.

ContributorsCrewe, Katherine (Author) / Brazel, Anthony J. (Author) / Middel, Ariane (Author)
Created2016-06-01