Matching Items (509)
Filtering by

Clear all filters

130428-Thumbnail Image.png
Description
The impact of increasing penetration of converter control-based generators (CCBGs) in a large-scale power system is assessed through a model based small signal stability analysis. Three test bed cases for the years 2010, 2020, and 2022 of the Western Electricity Coordinating Council (WECC) in the United States are used for

The impact of increasing penetration of converter control-based generators (CCBGs) in a large-scale power system is assessed through a model based small signal stability analysis. Three test bed cases for the years 2010, 2020, and 2022 of the Western Electricity Coordinating Council (WECC) in the United States are used for the analysis. Increasing penetration of wind-based Type 3 and wind-based Type 4 and PV Solar CCBGs is used in the tests. The participation and interaction of CCBGs and synchronous generators in traditional electromechanical interarea modes is analyzed. Two new types of modes dominated by CCBGs are identified. The characteristics of these new modes are described and compared to electromechanical modes in the frequency domain. An examination of the mechanism of the interaction between the CCBG control states and the synchronous generator control states is presented and validated through dynamic simulations. Actual system and forecast load data are used throughout.
Created2014-09-01
130433-Thumbnail Image.png
Description
The Physics and Chemistry of Surfaces and Interfaces conference has maintained a focus on the interfacial and surface properties of materials since its initiation in 1974. The conference continues to be a major force in this field, bringing together scientists from a variety of disciplines to focus upon the science

The Physics and Chemistry of Surfaces and Interfaces conference has maintained a focus on the interfacial and surface properties of materials since its initiation in 1974. The conference continues to be a major force in this field, bringing together scientists from a variety of disciplines to focus upon the science of interfaces and surfaces. Here, a historical view of the development of the conference and a discussion of some of the themes that have been focal points for many years are presented.
Created2013
131639-Thumbnail Image.png
Description
Aluminum alloys are commonly used for engineering applications due to their high strength to weight ratio, low weight, and low cost. Pitting corrosion, accelerated by saltwater environments, leads to fatigue cracks and stress corrosion cracking during service. Two-dimensional (2D) characterization methods are typically used to identify and characterize corrosion; however,

Aluminum alloys are commonly used for engineering applications due to their high strength to weight ratio, low weight, and low cost. Pitting corrosion, accelerated by saltwater environments, leads to fatigue cracks and stress corrosion cracking during service. Two-dimensional (2D) characterization methods are typically used to identify and characterize corrosion; however, these methods are destructive and do not enable an efficient means of quantifying mechanisms of pit initiation and growth. In this study, lab-scale x-ray microtomography was used to non-destructively observe, quantify, and understand pit growth in three dimensions over a 20-day corrosion period in the AA7075-T651 alloy. The XRT process, capable of imaging sample volumes with a resolution near one micrometer, was found to be an ideal tool for large-volume pit examination. Pit depths were quantified over time using renderings of sample volumes, leading to an understanding of how inclusion particles, oxide breakdown, and corrosion mechanisms impact the growth and morphology of pits. This process, when carried out on samples produced with two different rolling directions and rolling extents, yielded novel insights into the long-term macroscopic corrosion behaviors impacted by alloy production and design. Key among these were the determinations that the alloy’s rolling direction produces a significant difference in the average growth rate of pits and that the corrosion product layer loses its passivating effect as a result of cyclic immersion. In addition, a new mechanism of pitting corrosion is proposed which is focused on the pseudo-random spatial distribution of iron-rich inclusion particles in the alloy matrix, which produces a random distribution of pit depths based on the occurrence of co-operative corrosion near inclusion clusters.
ContributorsSinclair, Daniel Ritchie (Author) / Chawla, Nikhilesh (Thesis director) / Jiao, Yang (Committee member) / Bale, Hrishikesh (Committee member) / School of International Letters and Cultures (Contributor) / Materials Science and Engineering Program (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
131567-Thumbnail Image.png
Description
The successful reduction of CO2 and protons by a light-induced cobalt porphyrin/cytb562 hybrid metalloenzyme in water is reported. Incorporation of the porphyrin into a protein scaffold results in increases in CO and H2 production over naked porphyrin. Rational point mutations to the CoPPIX binding site of cytb562 modulate production,

The successful reduction of CO2 and protons by a light-induced cobalt porphyrin/cytb562 hybrid metalloenzyme in water is reported. Incorporation of the porphyrin into a protein scaffold results in increases in CO and H2 production over naked porphyrin. Rational point mutations to the CoPPIX binding site of cytb562 modulate production, indicating possible further improvements in catalytic activity.
ContributorsGwerder, Noah D (Author) / Ghirlanda, Giovanna (Thesis director) / Williams, Peter (Committee member) / Mangone, Marco (Committee member) / School of Molecular Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
132725-Thumbnail Image.png
Description
Duchenne muscular dystrophy (DMD) is a lethal, X-linked disease which occurs in approximately 1 in 3,500 male births. This disease is characterized by progressive muscle wasting and causes premature death. One of the earliest symptoms of this disease is mitochondrial dysfunction. Dystrophin is a protein found under the sarcolemma. The

Duchenne muscular dystrophy (DMD) is a lethal, X-linked disease which occurs in approximately 1 in 3,500 male births. This disease is characterized by progressive muscle wasting and causes premature death. One of the earliest symptoms of this disease is mitochondrial dysfunction. Dystrophin is a protein found under the sarcolemma. The N terminus binds to actin and the C terminus binds to dystrophin glycoprotein complex (DGC). DMD is caused by mutations in the dystrophin gene. C. elegans possess an ortholog of dystrophin, DYS-1. Though there is evidence that C. elegans can be used as a model organism to model DMD, nematode DGC has not been well characterized. Additionally, while we know that mitochondrial dysfunction has been found in humans and other model organisms, this has not been well defined in C. elegans. In order to address these issues, we crossed the SJ4103 worm strain (myo-3p::GFP(mit)) with dys-1(cx18) in order to visualize and quantify changes in mitochondria in a dys-1 background. SJ4103;cx18 nematodes were found to have less mitochondrial than SJ4103 which suggests mitochondrial dysfunction does occur in dys-1 worms. Furthermore, mitochondrial dysfunction was studied by knocking down members of the DGC, dys-1, dyb-1, sgn-1, sgca-1, and sgcb-1 in SJ4103 strain. Knock down of each gene resulted in decrease in abundance of mitochondria which suggests that each member of the DGC contributes to the overall health of nematode muscle. The ORF of dyb-1 was successfully cloned and tagged with GFP in order to visualize this DGC member C. elegans. Imaging of the transgenic dyb-1::GFP worm shows green fluoresce expressed in which suggests that dyb-1 is a functional component of the muscle fibers. This project will enable us to better understand the effects of dystrophin deficiency on mitochondrial function as well as visualize the expression of certain members of the DGC in order to establish C. elegans as a good model organism to study this disease.
ContributorsObrien, Shannon Nishino (Author) / Mangone, Marco (Thesis director) / Newbern, Jason (Committee member) / Hrach, Heather (Committee member) / School of Molecular Sciences (Contributor) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
133015-Thumbnail Image.png
Description
Cleavage and polyadenylation is a step in mRNA processing in which the 3’UTR is cleaved and a polyA tail is added to create a final mature transcript. This process relies on RNA sequence elements that guide a large multimeric protein complex named the Cleavage and Polyadenylation Complex to dock on

Cleavage and polyadenylation is a step in mRNA processing in which the 3’UTR is cleaved and a polyA tail is added to create a final mature transcript. This process relies on RNA sequence elements that guide a large multimeric protein complex named the Cleavage and Polyadenylation Complex to dock on the 3’UTR and execute the cleavage reaction. Interactions of the complex with the RNA and specific dynamics of complex recruitment and formation still remain largely uncharacterized. In our lab we have identified an Adenosine residue as the nucleotide most often present at the cleavage site, although it is unclear whether this specific element is a required instructor of cleavage and polyadenylation. To address whether the Adenosine residue is necessary and sufficient for the cleavage and polyadenylation reaction, we mutated this nucleotide at the cleavage site in three C. elegans protein coding genes, forcing the expression of these wt and mutant 3’UTRs, and studied how the cleavage and polyadenylation machinery process these genes in vivo. We found that interrupting the wt sequence elements found at the cleavage site interferes with the cleavage and polyadenylation reaction, suggesting that the sequence close to the end of the transcript plays a role in modulating the site of the RNA cleavage. This activity is also gene-specific. Genes such as ges-1 showed little disruption in the cleavage of the transcript, with similar location occurring in both the wt and mutant 3’UTRs. On the other hand, mutation of the cleavage site in genes such as Y106G6H.9 caused the activation of new cryptic cleavage sites within the transcript. Taken together, my experiments suggest that the sequence elements at the cleavage site somehow participate in the reaction to guide the cleavage reaction to occur at an exact site. This work will help to better understand the mechanisms of transcription termination in vivo and will push forward research aimed to study post-transcriptional gene regulation in eukaryotes.
ContributorsSteber, Hannah Suzanne (Author) / Mangone, Marco (Thesis director) / Harris, Robin (Committee member) / LaBaer, Joshua (Committee member) / School of Life Sciences (Contributor, Contributor) / School of Mathematical and Statistical Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
130363-Thumbnail Image.png
Description
Background
Fruit fly embryogenesis is one of the best understood animal development systems, and the spatiotemporal gene expression dynamics in this process are captured by digital images. Analysis of these high-throughput images will provide novel insights into the functions, interactions, and networks of animal genes governing development. To facilitate comparative analysis,

Background
Fruit fly embryogenesis is one of the best understood animal development systems, and the spatiotemporal gene expression dynamics in this process are captured by digital images. Analysis of these high-throughput images will provide novel insights into the functions, interactions, and networks of animal genes governing development. To facilitate comparative analysis, web-based interfaces have been developed to conduct image retrieval based on body part keywords and images. Currently, the keyword annotation of spatiotemporal gene expression patterns is conducted manually. However, this manual practice does not scale with the continuously expanding collection of images. In addition, existing image retrieval systems based on the expression patterns may be made more accurate using keywords.
Results
In this article, we adapt advanced data mining and computer vision techniques to address the key challenges in annotating and retrieving fruit fly gene expression pattern images. To boost the performance of image annotation and retrieval, we propose representations integrating spatial information and sparse features, overcoming the limitations of prior schemes.
Conclusions
We perform systematic experimental studies to evaluate the proposed schemes in comparison with current methods. Experimental results indicate that the integration of spatial information and sparse features lead to consistent performance improvement in image annotation, while for the task of retrieval, sparse features alone yields better results.
ContributorsYuan, Lei (Author) / Woodard, Alexander (Author) / Ji, Shuiwang (Author) / Jiang, Yuan (Author) / Zhou, Zhi-Hua (Author) / Kumar, Sudhir (Author) / Ye, Jieping (Author) / Biodesign Institute (Contributor) / Center for Evolution and Medicine (Contributor) / Ira A. Fulton Schools of Engineering (Contributor) / College of Liberal Arts and Sciences (Contributor) / School of Life Sciences (Contributor)
Created2012-05-23
135418-Thumbnail Image.png
Description
Solid oxide fuel cells have become a promising candidate in the development of high-density clean energy sources for the rapidly increasing demands in energy and global sustainability. In order to understand more about solid oxide fuel cells, the important step is to understand how to model heterogeneous materials. Heterogeneous materials

Solid oxide fuel cells have become a promising candidate in the development of high-density clean energy sources for the rapidly increasing demands in energy and global sustainability. In order to understand more about solid oxide fuel cells, the important step is to understand how to model heterogeneous materials. Heterogeneous materials are abundant in nature and also created in various processes. The diverse properties exhibited by these materials result from their complex microstructures, which also make it hard to model the material. Microstructure modeling and reconstruction on a meso-scale level is needed in order to produce heterogeneous models without having to shave and image every slice of the physical material, which is a destructive and irreversible process. Yeong and Torquato [1] introduced a stochastic optimization technique that enables the generation of a model of the material with the use of correlation functions. Spatial correlation functions of each of the various phases within the heterogeneous structure are collected from a two-dimensional micrograph representing a slice of a solid oxide fuel cell through computational means. The assumption is that two-dimensional images contain key structural information representative of the associated full three-dimensional microstructure. The collected spatial correlation functions, a combination of one-point and two-point correlation functions are then outputted and are representative of the material. In the reconstruction process, the characteristic two-point correlation functions is then inputted through a series of computational modeling codes and software to generate a three-dimensional visual model that is statistically similar to that of the original two-dimensional micrograph. Furthermore, parameters of temperature cooling stages and number of pixel exchanges per temperature stage are utilized and altered accordingly to observe which parameters has a higher impact on the reconstruction results. Stochastic optimization techniques to produce three-dimensional visual models from two-dimensional micrographs are therefore a statistically reliable method to understanding heterogeneous materials.
ContributorsPhan, Richard Dylan (Author) / Jiao, Yang (Thesis director) / Ren, Yi (Committee member) / Chemical Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
135135-Thumbnail Image.png
Description
Nucleic acid polymers have numerous applications in both therapeutics and research to control gene expression and bind biologically relevant targets. However, due to poor biological stability their clinical applications are limited. Chemical modifications can improve both intracellular and extracellular stability and enhance resistance to nuclease degradation. To identify a potential

Nucleic acid polymers have numerous applications in both therapeutics and research to control gene expression and bind biologically relevant targets. However, due to poor biological stability their clinical applications are limited. Chemical modifications can improve both intracellular and extracellular stability and enhance resistance to nuclease degradation. To identify a potential candidate for a highly stable synthetic nucleic acid, the biostability of α-L-threofuranosyl nucleic acid (TNA) was evaluated under simulated biological conditions. TNA contains a four-carbon sugar and is linked by 2’, 3’ phosphodiester bonds. We hypothesized that this distinct chemical structure would yield greater nuclease resistance in human serum and human liver microsomes, which were selected as biologically relevant nuclease conditions. We found that TNA oligonucleotides remained undigested for 7 days in these conditions. In addition, TNA/DNA heteropolymers and TNA/RNA oligonucleotide duplexes displayed nuclease resistance, suggesting that TNA has a protective effect over DNA and RNA. In conclusion TNA demonstrates potential as a viable synthetic nucleic acid for use in numerous clinical and therapeutic applications.
ContributorsCulbertson, Michelle Catherine (Author) / Maley, Carlo (Thesis director) / Mangone, Marco (Committee member) / Larsen, Andrew (Committee member) / School of Molecular Sciences (Contributor) / School of International Letters and Cultures (Contributor) / Barrett, The Honors College (Contributor)
Created2016-12
133654-Thumbnail Image.png
Description
Widespread knowledge of fracture mechanics is mostly based on previous models that generalize crack growth in materials over several loading cycles. The objective of this project is to characterize crack growth that occurs in titanium alloys, specifically Grade 5 Ti-6Al-4V, at the sub-cycle scale, or within a single loading cycle.

Widespread knowledge of fracture mechanics is mostly based on previous models that generalize crack growth in materials over several loading cycles. The objective of this project is to characterize crack growth that occurs in titanium alloys, specifically Grade 5 Ti-6Al-4V, at the sub-cycle scale, or within a single loading cycle. Using scanning electron microscopy (SEM), imaging analysis is performed to observe crack behavior at ten loading steps throughout the loading and unloading paths. Analysis involves measuring the incremental crack growth and crack tip opening displacement (CTOD) of specimens at loading ratios of 0.1, 0.3, and 0.5. This report defines the relationship between crack growth and the stress intensity factor, K, of the specimens, as well as the relationship between the R-ratio and stress opening level. The crack closure phenomena and effect of microcracks are discussed as they influence the crack growth behavior. This method has previously been used to characterize crack growth in Al 7075-T6. The results for Ti-6Al-4V are compared to these previous findings in order to strengthen conclusions about crack growth behavior.
ContributorsNazareno, Alyssa Noelle (Author) / Liu, Yongming (Thesis director) / Jiao, Yang (Committee member) / Mechanical and Aerospace Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05