Matching Items (686)
149998-Thumbnail Image.png
Description
As the 3rd generation solar cell, quantum dot solar cells are expected to outperform the first 2 generations with higher efficiency and lower manufacture cost. Currently the main problems for QD cells are the low conversion efficiency and stability. This work is trying to improve the reliability as well as

As the 3rd generation solar cell, quantum dot solar cells are expected to outperform the first 2 generations with higher efficiency and lower manufacture cost. Currently the main problems for QD cells are the low conversion efficiency and stability. This work is trying to improve the reliability as well as the device performance by inserting an interlayer between the metal cathode and the active layer. Titanium oxide and a novel nitrogen doped titanium oxide were compared and TiOxNy capped device shown a superior performance and stability to TiOx capped one. A unique light anneal effect on the interfacial layer was discovered first time and proved to be the trigger of the enhancement of both device reliability and efficiency. The efficiency was improved by 300% and the device can retain 73.1% of the efficiency with TiOxNy when normal device completely failed after kept for long time. Photoluminescence indicted an increased charge disassociation rate at TiOxNy interface. External quantum efficiency measurement also inferred a significant performance enhancement in TiOxNy capped device, which resulted in a higher photocurrent. X-ray photoelectron spectrometry was performed to explain the impact of light doping on optical band gap. Atomic force microscopy illustrated the effect of light anneal on quantum dot polymer surface. The particle size is increased and the surface composition is changed after irradiation. The mechanism for performance improvement via a TiOx based interlayer was discussed based on a trap filling model. Then Tunneling AFM was performed to further confirm the reliability of interlayer capped organic photovoltaic devices. As a powerful tool based on SPM technique, tunneling AFM was able to explain the reason for low efficiency in non-capped inverted organic photovoltaic devices. The local injection properties as well as the correspondent topography were compared in organic solar cells with or without TiOx interlayer. The current-voltage characteristics were also tested at a single interested point. A severe short-circuit was discovered in non capped devices and a slight reverse bias leakage current was also revealed in TiOx capped device though tunneling AFM results. The failure reason for low stability in normal devices was also discussed comparing to capped devices.
ContributorsYu, Jialin (Author) / Jabbour, Ghassan E. (Thesis advisor) / Alford, Terry L. (Thesis advisor) / Yu, Hongbin (Committee member) / Arizona State University (Publisher)
Created2011
150353-Thumbnail Image.png
Description
Advancements in computer vision and machine learning have added a new dimension to remote sensing applications with the aid of imagery analysis techniques. Applications such as autonomous navigation and terrain classification which make use of image classification techniques are challenging problems and research is still being carried out to find

Advancements in computer vision and machine learning have added a new dimension to remote sensing applications with the aid of imagery analysis techniques. Applications such as autonomous navigation and terrain classification which make use of image classification techniques are challenging problems and research is still being carried out to find better solutions. In this thesis, a novel method is proposed which uses image registration techniques to provide better image classification. This method reduces the error rate of classification by performing image registration of the images with the previously obtained images before performing classification. The motivation behind this is the fact that images that are obtained in the same region which need to be classified will not differ significantly in characteristics. Hence, registration will provide an image that matches closer to the previously obtained image, thus providing better classification. To illustrate that the proposed method works, naïve Bayes and iterative closest point (ICP) algorithms are used for the image classification and registration stages respectively. This implementation was tested extensively in simulation using synthetic images and using a real life data set called the Defense Advanced Research Project Agency (DARPA) Learning Applied to Ground Robots (LAGR) dataset. The results show that the ICP algorithm does help in better classification with Naïve Bayes by reducing the error rate by an average of about 10% in the synthetic data and by about 7% on the actual datasets used.
ContributorsMuralidhar, Ashwini (Author) / Saripalli, Srikanth (Thesis advisor) / Papandreou-Suppappola, Antonia (Committee member) / Turaga, Pavan (Committee member) / Arizona State University (Publisher)
Created2011
150400-Thumbnail Image.png
Description
Semiconductor nanowires are featured by their unique one-dimensional structure which makes them promising for small scale electronic and photonic device applications. Among them, III-V material nanowires are particularly outstanding due to their good electronic properties. In bulk, these materials reveal electron mobility much higher than conventional silicon based devices, for

Semiconductor nanowires are featured by their unique one-dimensional structure which makes them promising for small scale electronic and photonic device applications. Among them, III-V material nanowires are particularly outstanding due to their good electronic properties. In bulk, these materials reveal electron mobility much higher than conventional silicon based devices, for example at room temperature, InAs field effect transistor (FET) has electron mobility of 40,000 cm2/Vs more than 10 times of Si FET. This makes such materials promising for high speed nanowire FETs. With small bandgap, such as 0.354 eV for InAs and 1.52 eV for GaAs, it does not need high voltage to turn on such devices which leads to low power consumption devices. Another feature of direct bandgap allows their applications of optoelectronic devices such as avalanche photodiodes. However, there are challenges to face up. Due to their large surface to volume ratio, nanowire devices typically are strongly affected by the surface states. Although nanowires can be grown into single crystal structure, people observe crystal defects along the wires which can significantly affect the performance of devices. In this work, FETs made of two types of III-V nanowire, GaAs and InAs, are demonstrated. These nanowires are grown by catalyst-free MOCVD growth method. Vertically nanowires are transferred onto patterned substrates for coordinate calibration. Then electrodes are defined by e-beam lithography followed by deposition of contact metals. Prior to metal deposition, however, the substrates are dipped in ammonium hydroxide solution to remove native oxide layer formed on nanowire surface. Current vs. source-drain voltage with different gate bias are measured at room temperature. GaAs nanowire FETs show photo response while InAs nanowire FETs do not show that. Surface passivation is performed on GaAs FETs by using ammonium surfide solution. The best results on current increase is observed with around 20-30 minutes chemical treatment time. Gate response measurements are performed at room temperature, from which field effect mobility as high as 1490 cm2/Vs is extracted for InAs FETs. One major contributor for this is stacking faults defect existing along nanowires. For InAs FETs, thermal excitations observed from temperature dependent results which leads us to investigate potential barriers.
ContributorsLiang, Hanshuang (Author) / Yu, Hongbin (Thesis advisor) / Ferry, David (Committee member) / Tracy, Clarence (Committee member) / Arizona State University (Publisher)
Created2011
150360-Thumbnail Image.png
Description
A workload-aware low-power neuromorphic controller for dynamic power and thermal management in VLSI systems is presented. The neuromorphic controller predicts future workload and temperature values based on the past values and CPU performance counters and preemptively regulates supply voltage and frequency. System-level measurements from stateof-the-art commercial microprocessors are used to

A workload-aware low-power neuromorphic controller for dynamic power and thermal management in VLSI systems is presented. The neuromorphic controller predicts future workload and temperature values based on the past values and CPU performance counters and preemptively regulates supply voltage and frequency. System-level measurements from stateof-the-art commercial microprocessors are used to get workload, temperature and CPU performance counter values. The controller is designed and simulated using circuit-design and synthesis tools. At device-level, on-chip planar inductors suffer from low inductance occupying large chip area. On-chip inductors with integrated magnetic materials are designed, simulated and fabricated to explore performance-efficiency trade offs and explore potential applications such as resonant clocking and on-chip voltage regulation. A system level study is conducted to evaluate the effect of on-chip voltage regulator employing magnetic inductors as the output filter. It is concluded that neuromorphic power controller is beneficial for fine-grained per-core power management in conjunction with on-chip voltage regulators utilizing scaled magnetic inductors.
ContributorsSinha, Saurabh (Author) / Cao, Yu (Thesis advisor) / Bakkaloglu, Bertan (Committee member) / Yu, Hongbin (Committee member) / Christen, Jennifer B. (Committee member) / Arizona State University (Publisher)
Created2011
148104-Thumbnail Image.png
Description

Reducing the amount of error and introduced data variability increases the accuracy of Western blot results. In this study, different methods of normalization for loading differences and data alignment were explored with respect to their impact on Western blot results. GAPDH was compared to the LI-COR Revert total protein stain

Reducing the amount of error and introduced data variability increases the accuracy of Western blot results. In this study, different methods of normalization for loading differences and data alignment were explored with respect to their impact on Western blot results. GAPDH was compared to the LI-COR Revert total protein stain as a loading control. The impact of normalizing data to a control condition, which is commonly done to align Western blot data distributed over several immunoblots, was also investigated. Specifically, this study addressed whether normalization to a small subset of distinct controls on each immunoblot increases pooled data variability compared to a larger set of controls. Protein expression data for NOX-2 and SOD-2 from a study investigating the protective role of the bradykinin type 1 receptor in angiotensin-II induced left ventricle remodeling were used to address these questions but are also discussed in the context of the original study. The comparison of GAPDH and Revert total protein stain as a loading control was done by assessing their correlation and comparing how they affected protein expression results. Additionally, the impact of treatment on GAPDH was investigated. To assess how normalization to different combinations of controls influences data variability, protein data were normalized to the average of 5 controls, the average of 2 controls, or an average vehicle and the results by treatment were compared. The results of this study demonstrated that GAPDH expression is not affected by angiotensin-II or bradykinin type 1 receptor antagonist R-954 and is a less sensitive loading control compared to Revert total protein stain. Normalization to the average of 5 controls tended to reduce pooled data variability compared to 2 controls. Lastly, the results of this study provided preliminary evidence that R-954 does not alter the expression of NOX-2 or SOD-2 to an expression profile that would be expected to explain the protection it confers against Ang-II induced left ventricle remodeling.

ContributorsSiegel, Matthew Marat (Author) / Jeremy, Mills (Thesis director) / Sweazea, Karen (Committee member) / Hale, Taben (Committee member) / School of Molecular Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
148110-Thumbnail Image.png
Description

This thesis identifies and explains two main problems students face during their internships. The first problem relates to feeling bored at internships due to the simplicity of projects or lack of work. From the interviews conducted, several strategies to avoid this boredom were created, including having employers design education plans

This thesis identifies and explains two main problems students face during their internships. The first problem relates to feeling bored at internships due to the simplicity of projects or lack of work. From the interviews conducted, several strategies to avoid this boredom were created, including having employers design education plans for interns to further their knowledge in programs such as excel during their downtime. The second problem with internships discovered focuses on the gap between what is taught in schools versus what is expected of interns in practice. This thesis identifies several opportunities for improvement in education and strategies on how to handle feeling overwhelmed on intern projects due to lack of knowledge.

ContributorsKomarnyckyj, Katya (Author) / Byrne, Jared (Thesis director) / Crawford, Cassidy (Committee member) / School of Molecular Sciences (Contributor) / Department of Finance (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
148130-Thumbnail Image.png
Description

Over 40% of adults in the United States are considered obese. Obesity is known to cause abnormal metabolic effects and lead to other negative health consequences. Interestingly, differences in metabolism and contractile performance between obese and healthy weight individuals are associated with differences in skeletal muscle fiber type composition between

Over 40% of adults in the United States are considered obese. Obesity is known to cause abnormal metabolic effects and lead to other negative health consequences. Interestingly, differences in metabolism and contractile performance between obese and healthy weight individuals are associated with differences in skeletal muscle fiber type composition between these groups. Each fiber type is characterized by unique metabolic and contractile properties, which are largely determined by the myosin heavy chain isoform (MHC) or isoform combination that the fiber expresses. In previous studies, SDS-PAGE single fiber analysis has been utilized as a method to determine MHC isoform distribution and single fiber type distribution in skeletal muscle. Herein, a methodological approach to analyze MHC isoform and fiber type distribution in skeletal muscle was fine-tuned for use in human and rodent studies. In the future, this revised methodology will be implemented to evaluate the effects of obesity and exercise on the phenotypic fiber type composition of skeletal muscle.

ContributorsOhr, Jalonna Rose (Author) / Katsanos, Christos (Thesis director) / Tucker, Derek (Committee member) / Serrano, Nathan (Committee member) / School of Life Sciences (Contributor) / School of Molecular Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
147836-Thumbnail Image.png
Description

Since 1975, the prevalence of obesity has nearly tripled around the world. In 2016, 39% of adults, or 1.9 billion people, were considered overweight, and 13% of adults, or 650 million people, were considered obese. Furthermore, Cardiovascular disease remains to be the leading cause of death for adults in the

Since 1975, the prevalence of obesity has nearly tripled around the world. In 2016, 39% of adults, or 1.9 billion people, were considered overweight, and 13% of adults, or 650 million people, were considered obese. Furthermore, Cardiovascular disease remains to be the leading cause of death for adults in the United States, with 655,000 people dying from related conditions and consequences each year. Including fiber in one’s dietary regimen has been shown to greatly improve health outcomes in regards to these two areas of health. However, not much literature is available on the effects of corn-based fiber, especially detailing the individual components of the grain itself. The purpose of this preliminary study was to test the differences in influence on both LDL-cholesterol and triglycerides between treatments based on whole-grain corn flour, refined corn flour, and 50% refined corn flour + 50% corn bran derived from whole grain cornmeal (excellent fiber) in healthy overweight (BMI ≥ 25.0 kg/m2) adults (ages 18 - 70) with high LDL cholesterol (LDL ≥ 120mg/dL). 20 participants, ages 18 - 64 (10 males, 10 females) were involved. Data was derived from blood draws taken before and after each of the three treatments as well as before and after each treatment’s wash out periods. A general linear model was used to assess the effect of corn products on circulating concentrations of LDL-cholesterol and triglycerides. From the model, it was found that the whole-grain corn flour and the 50% refined corn flour + 50% corn bran drive from whole grain cornmeal treatments produced a higher, similar benefit in reductions in LDL-cholesterol. However, the whole grain flour, refined flour, and bran-based fiber treatments did not influence the triglyceride levels of the participants throughout this study. Further research is needed to elucidate the effects of these fiber items on cardiometabolic disease markers in the long-term as well as with a larger sample size.

ContributorsLe, Justin (Author) / Whisner, Corrie (Thesis director) / Ortega Santos, Carmen (Committee member) / School of Molecular Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
147842-Thumbnail Image.png
Description

Motor learning is the process of improving task execution according to some measure of performance. This can be divided into skill learning, a model-free process, and adaptation, a model-based process. Prior studies have indicated that adaptation results from two complementary learning systems with parallel organization. This report attempted to answer

Motor learning is the process of improving task execution according to some measure of performance. This can be divided into skill learning, a model-free process, and adaptation, a model-based process. Prior studies have indicated that adaptation results from two complementary learning systems with parallel organization. This report attempted to answer the question of whether a similar interaction leads to savings, a model-free process that is described as faster relearning when experiencing something familiar. This was tested in a two-week reaching task conducted on a robotic arm capable of perturbing movements. The task was designed so that the two sessions differed in their history of errors. By measuring the change in the learning rate, the savings was determined at various points. The results showed that the history of errors successfully modulated savings. Thus, this supports the notion that the two complementary systems interact to develop savings. Additionally, this report was part of a larger study that will explore the organizational structure of the complementary systems as well as the neural basis of this motor learning.

ContributorsRuta, Michael (Author) / Santello, Marco (Thesis director) / Blais, Chris (Committee member) / School of Mathematical and Statistical Sciences (Contributor) / School of Molecular Sciences (Contributor) / School of Human Evolution & Social Change (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
147857-Thumbnail Image.png
Description

Mutations in the DNA of somatic cells, resulting from inaccuracies in DNA<br/>replication or exposure to harsh conditions (ionizing radiation, carcinogens), may be<br/>loss-of-function mutations, and the compounding of these mutations can lead to cancer.<br/>Such mutations can come in the form of thymine dimers, N-𝛽 glycosyl bond hydrolysis,<br/>oxidation by hydrogen peroxide or

Mutations in the DNA of somatic cells, resulting from inaccuracies in DNA<br/>replication or exposure to harsh conditions (ionizing radiation, carcinogens), may be<br/>loss-of-function mutations, and the compounding of these mutations can lead to cancer.<br/>Such mutations can come in the form of thymine dimers, N-𝛽 glycosyl bond hydrolysis,<br/>oxidation by hydrogen peroxide or other radicals, and deamination of cytosine to uracil.<br/>However, many cells possess the machinery to counteract the deleterious effects of<br/>such mutations. While eukaryotic DNA repair enzymes decrease the incidence of<br/>mutations from 1 mistake per 10^7 nucleotides to 1 mistake per 10^9 nucleotides, these<br/>mutations, however sparse, are problematic. Of particular interest is a mutation in which<br/>uracil is incorporated into DNA, either by spontaneous deamination of cysteine or<br/>misincorporation. Such mutations occur about one in every 107 cytidine residues in 24<br/>hours. DNA uracil glycosylase (UDG) recognizes these mutations and cleaves the<br/>glycosidic bond, creating an abasic site. However, the rate of this form of DNA repair<br/>varies, depending on the nucleotides that surround the uracil. Most enzyme-DNA<br/>interactions depend on the sequence of DNA (which may change the duplex twist),<br/>even if they only bind to the sugar-phosphate backbone. In the mechanism of uracil<br/>excision, UDG flips the uracil out of the DNA double helix, and this step may be<br/>impaired by base pairs that neighbor the uracil. The deformability of certain regions of<br/>DNA may facilitate this step in the mechanism, causing these regions to be less<br/>mutable. In DNA, base stacking, a form of van der Waals forces between the aromatic<br/>nucleic bases, may make these uracil inclusions more difficult to excise. These regions,<br/>stabilized by base stacking interactions, may be less susceptible to repair by<br/>glycosylases such as UDG, and thus, more prone to mutation.

ContributorsUgaz, Bryan T (Author) / Levitus, Marcia (Thesis director) / Van Horn, Wade (Committee member) / Department of Physics (Contributor) / School of Molecular Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05