Matching Items (44)
Filtering by

Clear all filters

171589-Thumbnail Image.png
Description
Interdigitated back contact (IBC) solar cells have achieved the highest single junction silicon wafer-based solar cell power conversion efficiencies reported to date. This thesis is about the fabrication of a high-efficiency silicon heterojunction IBC solar cell for potential use as the bottom cell for a 3-terminal lattice-matched dilute-nitride Ga (In)NP(As)/Si

Interdigitated back contact (IBC) solar cells have achieved the highest single junction silicon wafer-based solar cell power conversion efficiencies reported to date. This thesis is about the fabrication of a high-efficiency silicon heterojunction IBC solar cell for potential use as the bottom cell for a 3-terminal lattice-matched dilute-nitride Ga (In)NP(As)/Si monolithic tandem solar cell. An effective fabrication process has been developed and the process challenges related to open circuit voltage (Voc), series resistance (Rs), and fill factor (FF) are experimentally analyzed. While wet etching, the sample lost the initial passivation, and by changing the etchant solution and passivation process, the voltage at maximum power recovered to an initial value of over 710 mV before metallization. The factors reducing the series resistance loss in IBC cells were also studied. One of these factors was the Indium Tin Oxide (ITO) sputtering parameters, which impact the conductivity of the ITO layer and transport across the a-Si:H/ITO interface. For the standard recipe, the chamber pressure was 3.5 mTorr with no oxygen partial pressure, and the thickness of the ITO layer in contact with the a-Si:H layers, was optimized to 150 nm. The patterning method for the metal contacts and final annealing also change the contact resistance of the base and emitter stack layers. The final annealing step is necessary to recover the sputtering damage; however, the higher the annealing time the higher the final IBC series resistance. The best efficiency achieved was 19.3% (Jsc = 37 mA/cm2, Voc = 691 mV, FF = 71.7%) on 200 µm thick 1-15 Ω-cm n-type CZ C-Si with a designated area of 4 cm2.
ContributorsMoeini Rizi, Mansoure (Author) / Goodnick, Stephen (Thesis advisor) / Honsberg, Christina (Committee member) / Goryll, Michael (Committee member) / Smith, David (Committee member) / Bowden, Stuart (Committee member) / Arizona State University (Publisher)
Created2022
171492-Thumbnail Image.png
Description
The future will be replete with Artificial Intelligence (AI) based agents closely collaborating with humans. Although it is challenging to construct such systems for real-world conditions, the Intelligent Tutoring System (ITS) community has proposed several techniques to work closely with students. However, there is a need to extend these systems

The future will be replete with Artificial Intelligence (AI) based agents closely collaborating with humans. Although it is challenging to construct such systems for real-world conditions, the Intelligent Tutoring System (ITS) community has proposed several techniques to work closely with students. However, there is a need to extend these systems outside the controlled environment of the classroom. More recently, Human-Aware Planning (HAP) community has developed generalized AI techniques for collaborating with humans and providing personalized support or guidance to the collaborators. In this thesis, the take learning from the ITS community is extend to construct such human-aware systems for real-world domains and evaluate them with real stakeholders. First, the applicability of HAP to ITS is demonstrated, by modeling the behavior in a classroom and a state-of-the-art tutoring system called Dragoon. Then these techniques are extended to provide decision support to a human teammate and evaluate the effectiveness of the framework through ablation studies to support students in constructing their plan of study (\ipos). The results show that these techniques are helpful and can support users in their tasks. In the third section of the thesis, an ITS scenario of asking questions (or problems) in active environments is modeled by constructing questions to elicit a human teammate's model of understanding. The framework is evaluated through a user study, where the results show that the queries can be used for eliciting the human teammate's mental model.
ContributorsGrover, Sachin (Author) / Kambhampati, Subbarao (Thesis advisor) / Smith, David (Committee member) / Srivastava, Sidhharth (Committee member) / VanLehn, Kurt (Committee member) / Arizona State University (Publisher)
Created2022
171904-Thumbnail Image.png
Description
Written corrective feedback (WCF) has received considerable attention in secondlanguage (L2) writing research. The conducive role of WCF in developing L2 writing and second language acquisition has been corroborated by a number of theoretical frameworks, and the findings of empirical studies, meta-analyses, and research syntheses. WCF research has predominantly addressed its effectiveness in

Written corrective feedback (WCF) has received considerable attention in secondlanguage (L2) writing research. The conducive role of WCF in developing L2 writing and second language acquisition has been corroborated by a number of theoretical frameworks, and the findings of empirical studies, meta-analyses, and research syntheses. WCF research has predominantly addressed its effectiveness in improving learners’ syntactic, lexical, and orthographic knowledge. This dissertation project extends the scope of this line of research to formulaic aspects of language and investigates the relative effectiveness of WCF targeting formulaic vs. non-formulaic constructions in L2 writing. The text-analytic descriptive aspect of this research design aimed at investigating the extent of L2 learners’ non-target-like use of formulaic vs. non-formulaic forms in L2 writing and writing teachers’ WCF treatment of non-target (non)formulaic language use. A total of 480 first drafts of essays written by 33 advanced adult English-as-a-foreign language (EFL) learners during one semester and 480 drafts of essays corrected through WCF by three EFL teachers constituted the corpus in this study. Advancing the field of learner corpus research, the findings demonstrated that whereas learners’ non-target formulaic forms outnumbered that of non-formulaic ones in their writing assignments, all three teachers provided WCF more often for erroneous use of non-formulaic forms. The quasi-experimental aspect of the research design attempts to add new empirical evidence on the L2 learning potential of accessing and processing WCF provided for formulaic vs. non-formulaic constructions in L2 writing. To this end, a total of 66 EFL learners in a Test of English as a Foreign Language preparation course participated in a pretest-posttest design, with 5 experimental groups (those who were provided with direct, indirect, direct plus metalinguistic, and indirect plus metalinguistic WCF) and a control group (those who were not provided with WCF). Maintaining a division between formulaic vs. non-formulaic forms, the findings provide empirical evidence on the interactions between types of WCF, types of linguistic targets, and the effectiveness of WCF in terms of enhancing L2 learners’ accuracy and acquisition in their revised writing and new writings in the short and long term.
ContributorsGholami, Leila (Author) / Smith, David (Thesis advisor) / Matsuda, Paul K (Committee member) / James, Mark A (Committee member) / Arizona State University (Publisher)
Created2022
171628-Thumbnail Image.png
Description
Transitioning into civilian life after military service is a challenging prospect. It can be difficult to find employment and maintain good mental health, and up to 70 percent of veterans experience homelessness or alcoholism. Upon discharge, many veterans pursue higher education as a way to reintegrate into civilian society. However,

Transitioning into civilian life after military service is a challenging prospect. It can be difficult to find employment and maintain good mental health, and up to 70 percent of veterans experience homelessness or alcoholism. Upon discharge, many veterans pursue higher education as a way to reintegrate into civilian society. However, many studies have shown that veterans encounter multiple challenges during their attempt to reintegrate into civilian life, including anxiety, a lack of relevant skills, post-traumatic stress disorder (PTSD), and other issues that may lead to communication and interaction challenges in the higher education environment. Student veterans also face challenges in the lack of common language and culture clashes due to differences between military and college culture. This study used a mixed-methods approach to examine the challenges military veterans face related to language use in civilian life. The data was collected from 149 student veterans who completed a questionnaire and 11 student veterans who participated in interviews. Detailed analysis of collected data showed that student veterans experienced some challenges in language use, especially when they initially enrolled in their courses, but they seemed to have overcome challenges after spending time in the university setting. The veterans who had prior college education before joining the military seemed to have a slight advantage, having had experience using the academic language. The study also explored how student veterans chose to share their veteran status with other people in their university community. The findings showed that they strongly identified with their veteran identity and was comfortable sharing their status with others, but they also sometimes were reluctant to share their military experience in details because they were afraid that their peers would not understand.
ContributorsObaid, Naji (Author) / Matsuda, Aya (Thesis advisor) / Smith, David (Committee member) / James, Mark (Committee member) / Arizona State University (Publisher)
Created2022
Description

Studying the so-called ”hidden” phases of quantum materials—phases that do not exist under equilibrium conditions, but can be accessed with light—reveals new insights into the broader field of structural phase transitions. Using terahertz irradiation as well as hard x-ray probes made available by x-ray free electron lasers (XFELs) provides unique

Studying the so-called ”hidden” phases of quantum materials—phases that do not exist under equilibrium conditions, but can be accessed with light—reveals new insights into the broader field of structural phase transitions. Using terahertz irradiation as well as hard x-ray probes made available by x-ray free electron lasers (XFELs) provides unique capabilities to study phonon dispersion in these materials. Here, we study the cubic peak of the quantum paraelectric strontium titanate (SrTiO3, STO) below the 110 K cubic-to-tetragonal tran- sition. Our results reveal a temperature and field strength dependence of the transverse acoustic mode in agreement with previous work on the avoided crossing occurring at finite wavevector, as well as evidence of anharmonic coupling between transverse optical phonons and a fully symmetric A1g phonon. These results elucidate previous optical studies on STO and hold promise for future studies on the hidden metastable phases of quantum materials.

ContributorsStanton, Jade (Author) / Teitelbaum, Samuel (Thesis director) / Smith, David (Committee member) / Barrett, The Honors College (Contributor) / School of Mathematical and Statistical Sciences (Contributor) / Department of Physics (Contributor)
Created2023-05
162019-Thumbnail Image.png
Description

Cities in the Global South face rapid urbanization challenges and often suffer an acute lack of infrastructure and governance capacities. Smart Cities Mission, in India, launched in 2015, aims to offer a novel approach for urban renewal of 100 cities following an area‐based development approach, where the use of ICT

Cities in the Global South face rapid urbanization challenges and often suffer an acute lack of infrastructure and governance capacities. Smart Cities Mission, in India, launched in 2015, aims to offer a novel approach for urban renewal of 100 cities following an area‐based development approach, where the use of ICT and digital technologies is particularly emphasized. This article presents a critical review of the design and implementation framework of this new urban renewal program across selected case‐study cities. The article examines the claims of the so‐called “smart cities” against actual urban transformation on‐ground and evaluates how “inclusive” and “sustainable” these developments are. We quantify the scale and coverage of the smart city urban renewal projects in the cities to highlight who the program includes and excludes. The article also presents a statistical analysis of the sectoral focus and budgetary allocations of the projects under the Smart Cities Mission to find an inherent bias in these smart city initiatives in terms of which types of development they promote and the ones it ignores. The findings indicate that a predominant emphasis on digital urban renewal of selected precincts and enclaves, branded as “smart cities,” leads to deepening social polarization and gentrification. The article offers crucial urban planning lessons for designing ICT‐driven urban renewal projects, while addressing critical questions around inclusion and sustainability in smart city ventures.`

ContributorsPraharaj, Sarbeswar (Author)
Created2021-05-07
168318-Thumbnail Image.png
Description
In this dissertation, the surface interactions of fluorine were studied during atomic layer deposition (ALD) and atomic layer etching (ALE) of wide band gap materials. To enable this research two high vacuum reactors were designed and constructed for thermal and plasma enhanced ALD and ALE, and they were equipped for

In this dissertation, the surface interactions of fluorine were studied during atomic layer deposition (ALD) and atomic layer etching (ALE) of wide band gap materials. To enable this research two high vacuum reactors were designed and constructed for thermal and plasma enhanced ALD and ALE, and they were equipped for in-situ process monitoring. Fluorine surface interactions were first studied in a comparison of thermal and plasma enhanced ALD (TALD and PEALD) of AlF3 thin films prepared using hydrogen fluoride (HF), trimethylaluminum (TMA), and H2-plasma. The ALD AlF3 films were compared ¬in-situ using ellipsometry and X-ray photoelectron spectroscopy (XPS). Ellipsometry showed a growth rate of 1.1 Å/ cycle and 0.7 Å/ cycle, at 100°C, for the TALD and PEALD AlF3 processes, respectively. XPS indicated the presence of Al-rich clusters within the PEALD film. The formation of the Al-rich clusters is thought to originate during the H2-plasma step of the PEALD process. The Al-rich clusters were not detected in the TALD AlF3 films. This study provided valuable insight on the role of fluorine in an ALD process. Reactive ion etching is a common dry chemical etch process for fabricating GaN devices. However, the use of ions can induce various defects, which can degrade device performance. The development of low-damage post etch processes are essential for mitigating plasma induced damage. As such, two multistep ALE methods were implemented for GaN based on oxidation, fluorination, and ligand exchange. First, GaN surfaces were oxidized using either water vapor or O2-plasma exposures to produce a thin oxide layer. The oxide layer was addressed using alternating exposures of HF and TMG, which etch Ga2O3 films. Each ALE process was characterized using in-situ using ellipsometry and XPS and ex-situ transmission electron microscopy (TEM). XPS indicated F and O impurities remained on the etched surfaces. Ellipsometry and TEM showed a slight reduction in thickness. The very low ALE rate was interpreted as the inability of the Ga2O3 ALE process to fluorinate the ordered surface oxide on GaN (0001). Overall, these results indicate HF is effective for the ALD of metal fluorides and the ALE of metal oxides.
ContributorsMessina, Daniel C (Author) / Nemanich, Robert J (Thesis advisor) / Goodnick, Stephen (Committee member) / Ponce, Fernando A (Committee member) / Smith, David (Committee member) / Arizona State University (Publisher)
Created2021
156673-Thumbnail Image.png
Description
A piezoelectric transducer, comprised of electroded and active pad PZT layer atop a backing PZT layer and protected with an acoustic matching layer, and operating under a pulse-echo technique for longitudinal ultrasonic imaging, acts as both source and detector.

Ultrasonic transducer stacks (modules), which had failed or passed during pulse-echo

A piezoelectric transducer, comprised of electroded and active pad PZT layer atop a backing PZT layer and protected with an acoustic matching layer, and operating under a pulse-echo technique for longitudinal ultrasonic imaging, acts as both source and detector.

Ultrasonic transducer stacks (modules), which had failed or passed during pulse-echo sensitivity testing, were received from Consortium X. With limited background information on these stacks, the central theme was to determine the origin(s) of failure via the use of thermal and physicochemical characterization techniques.

The optical and scanning electron microscopy revealed that contact electrode layers are discontinuous in all samples, while delaminations between electrodes and pad layer were observed in failed samples. The X-ray diffraction data on the pad PZT revealed an overall c/a ratio of 1.022 ratio and morphotropic boundary composition, with significant variations of the Zr to Ti ratio within a sample and between samples. Electron probe microanalysis confirmed that the overall Zr to Ti ratio of the pad PZT was 52/48, and higher amounts of excess PbO in failed samples, whereas, inductively coupled plasma mass spectrometry revealed the presence of Mn, Al, and Sb (dopants) and presence of Cu (sintering aid) in in this hard (pad) PZT. Additionally, three exothermic peaks during thermal analysis was indicative of incomplete calcination of pad PZT. Moreover, transmission electron microscopy and scanning transmission electron microscopy revealed the presence of parylene at the Ag-pad PZT interface and within the pores of pad PZT (in failed samples subjected to electric fields). This further dilutes the electrical, mechanical, and electromechanical properties of the pad PZT, which in turn detrimentally influences the pulse echo sensitivity.
ContributorsPeri, Prudhvi Ram (Author) / Dey, Sandwip (Thesis advisor) / Smith, David (Committee member) / Alford, Terry (Committee member) / Arizona State University (Publisher)
Created2018
157604-Thumbnail Image.png
Description
Computer assisted language learning (CALL) has become increasingly common as a means of helping learners develop essential skills in a second or foreign language. However, while many CALL programs claim to be based on principles of second language acquisition (SLA) theory and research, evaluation of design and learning outcomes at

Computer assisted language learning (CALL) has become increasingly common as a means of helping learners develop essential skills in a second or foreign language. However, while many CALL programs claim to be based on principles of second language acquisition (SLA) theory and research, evaluation of design and learning outcomes at the level of individual CALL exercises is lacking in the existing literature. The following proposed study will explore the design of computer-based vocabulary matching exercises using both written text and images and the effects of various design manipulations on learning outcomes. The study will use eye-tracking to investigate what users attend to on screen as they work through a series of exercises with different configurations of written words and images. It will ask whether manipulation of text and image features and combinations can have an effect on learners’ attention to the various elements, and if so, whether differences in levels of attention results in higher or lower scores for measures of learning. Specifically, eye-tracking data will be compared to post-test scores for recall and recognition of target vocabulary items to look for a correlation between levels of attention to written forms in-task and post-test gains in scores for vocabulary learning.
ContributorsPatchin, Colleen (Author) / Smith, David (Thesis advisor) / Ross, Andrew (Committee member) / James, Mark (Committee member) / Arizona State University (Publisher)
Created2019
154831-Thumbnail Image.png
Description
This dissertation describes fundamental studies of hollow carbon nanostructures, which may be used as electrodes for practical energy storage applications such as batteries or supercapacitors. Electron microscopy is heavily utilized for the nanoscale characterization. To control the morphology of hollow carbon nanostructures, ZnO nanowires serve as sacrificial templates. The first

This dissertation describes fundamental studies of hollow carbon nanostructures, which may be used as electrodes for practical energy storage applications such as batteries or supercapacitors. Electron microscopy is heavily utilized for the nanoscale characterization. To control the morphology of hollow carbon nanostructures, ZnO nanowires serve as sacrificial templates. The first part of this dissertation focuses on the optimization of synthesis parameters and the scale-up production of ZnO nanowires by vapor transport method. Uniform ZnO nanowires with 40 nm width can be produced by using 1100 °C reaction temperature and 20 sccm oxygen flow rate, which are the two most important parameters.

The use of ethanol as carbon source with or without water steam provides uniform carbonaceous deposition on ZnO nanowire templates. The amount of as-deposited carbonaceous material can be controlled by reaction temperature and reaction time. Due to the catalytic property of ZnO surface, the thicknesses of carbonaceous layers are typically in nanometers. Different methods to remove the ZnO templates are explored, of which hydrogen reduction at temperatures higher than 700 °C is most efficient. The ZnO templates can also be removed under ethanol environment, but the temperatures need to be higher than 850 °C for practical use.

Characterizations of hollow carbon nanofibers show that the hollow carbon nanostructures have a high specific surface area (>1100 m2/g) with the presence of mesopores (~3.5 nm). The initial data on energy storage as electrodes of electrochemical double layer capacitors show that high specific capacitance (> 220 F/g) can be obtained, which is related to the high surface area and unique porous hollow structure with a thin wall.
ContributorsSong, Yian (Author) / Liu, Jingyue (Committee member) / Smith, David (Committee member) / McCartney, Martha (Committee member) / Chen, Tingyong (Committee member) / Arizona State University (Publisher)
Created2016