Matching Items (174)
Filtering by

Clear all filters

136335-Thumbnail Image.png
Description
The primary motor cortex (M1) plays a vital role in motor planning and execution, as well as in motor learning. Baseline corticospinal excitability (CSE) in M1 is known to increase as a result of motor learning, but less is understand about the modulation of CSE at the pre-execution planning stage

The primary motor cortex (M1) plays a vital role in motor planning and execution, as well as in motor learning. Baseline corticospinal excitability (CSE) in M1 is known to increase as a result of motor learning, but less is understand about the modulation of CSE at the pre-execution planning stage due to learning. This question was addressed using single pulse transcranial magnetic stimulation (TMS) to measure the modulation of both baseline and planning CSE due to learning a reach to grasp task. It was hypothesized that baseline CSE would increase and planning CSE decrease as a function of trial; an increase in baseline CSE would replicate established findings in the literature, while a decrease in planning would be a novel finding. Eight right-handed subjects were visually cued to exert a precise grip force, with the goal of producing that force accurately and consistently. Subjects effectively learned the task in the first 10 trials, but no significant trends were found in the modulation of baseline or planning CSE. The lack of significant results may be due to the very quick learning phase or the lower intensity of training as compared to past studies. The findings presented here suggest that planning and baseline CSE may be modulated along different time courses as learning occurs and point to some important considerations for future studies addressing this question.
ContributorsMoore, Dalton Dale (Author) / Santello, Marco (Thesis director) / Kleim, Jeff (Committee member) / Barrett, The Honors College (Contributor) / Harrington Bioengineering Program (Contributor)
Created2015-05
136195-Thumbnail Image.png
Description
The intervertebral disc goes through degenerative changes with age, which leads to disc thinning, bulging, or herniation. Spinal fusion treatments are ineffective as they cause quicker degeneration of adjacent discs and fail in nearly 20% of cases, so researchers have turned to tissue-engineering biocompatible intervertebral discs for transplantation. However novel

The intervertebral disc goes through degenerative changes with age, which leads to disc thinning, bulging, or herniation. Spinal fusion treatments are ineffective as they cause quicker degeneration of adjacent discs and fail in nearly 20% of cases, so researchers have turned to tissue-engineering biocompatible intervertebral discs for transplantation. However novel and effective as this may seem, these transplanted discs still show evidence of degeneration after just 5 years. I hypothesize that these discs are degenerating due to a blockage of the cartilaginous endplates post-transplantation that is hindering nutrient transport through the intervertebral disc. In order to test this hypothesis, I developed a mathematical model of nutrient transport through the intervertebral disc in one diurnal daily loading cycle. This model was used to simulate open endplates and blocked endplates and then compare differences in nutrient concentration and nutrient transport to the center of the disc. Results from the math model simulations were then compared to in vitro experimental data collected in lab to verify the findings on a physiological level. Results showed significant differences, both in vitro and in the model, between nutrient transport in open endplates vs blocked endplates, lending support to the original hypothesis. This study only presents preliminary results, but could hold the key to preventing future disc degeneration post-transplantation.
ContributorsMunter, Bryce Taylor (Author) / Santello, Marco (Thesis director) / Caplan, Michael (Committee member) / Giers, Morgan (Committee member) / Barrett, The Honors College (Contributor) / Harrington Bioengineering Program (Contributor)
Created2015-05
135593-Thumbnail Image.png
Description
The effect of conflicting sensorimotor memories on optimal force strategies was explored. Subjects operated a virtual object controlled by a physical handle to complete a simple straight-line task. Perturbations applied to the handle induced a period of increased error in subject accuracy. After two blocks of 33 trials, perturbations switched

The effect of conflicting sensorimotor memories on optimal force strategies was explored. Subjects operated a virtual object controlled by a physical handle to complete a simple straight-line task. Perturbations applied to the handle induced a period of increased error in subject accuracy. After two blocks of 33 trials, perturbations switched direction, inducing increased error from the previous trials. Subjects returned after a 24-hour period to complete a similar protocol, but beginning with the second context and ending with the first. Interference from the first context on each day caused an increase in initial error for the second (P < 0.05). Following the rest period, subjects showed retention of the sensorimotor memory from the previous day through significantly decreased initial error (P = 3x10-6). However, subjects showed an increase in forces for each new context resulting from a sub-optimal motor strategy. Higher levels of total effort (P < 0.05) and a lack of separation between force values for opposing and non-opposing digits (P > 0.05) indicated a strategy that used more energy to complete the task, even when rates of learning appeared identical or improved. Two possible mechanisms for this lack of energy conservation have been proposed.
ContributorsSmith, Michael David (Author) / Santello, Marco (Thesis director) / Kleim, Jeffrey (Committee member) / Harrington Bioengineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
135595-Thumbnail Image.png
Description
2015 marks the deadline for the UN Millennium Development Goal 5 to reduce global maternal mortality rate (MMR) by 75% since 1990. As of 2015, MMR has only been reduced by 45%. Many international organizations claim that more medically trained midwives can meet global maternal health care needs. This study

2015 marks the deadline for the UN Millennium Development Goal 5 to reduce global maternal mortality rate (MMR) by 75% since 1990. As of 2015, MMR has only been reduced by 45%. Many international organizations claim that more medically trained midwives can meet global maternal health care needs. This study investigates two major questions. What is the role of midwives in diverse international maternal healthcare contexts? How do midwives in these different contexts define their roles and the barriers to providing the best care for women? From May to August 2015, I conducted over 70 interviews with midwives in Netherlands, Sweden, Rwanda, Bangladesh, Australia and Guatemala, interviewing between 6 and 13 midwives from each country. The majority of midwives defined their roles as supporting women's individual capacities and power through normal birth, and knowing when to refer when high-risk complications arise. Although thematic barriers vary by country, midwives in all countries believed that maternal healthcare can be improved by increased collaboration between midwives and other health care professionals, better access to culturally appropriate services, and greater public awareness of the role of midwives.
ContributorsCarson, Anna Elizabeth (Author) / Hruschka, Daniel (Thesis director) / Maupin, Jonathan (Committee member) / School of International Letters and Cultures (Contributor) / School of Human Evolution and Social Change (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
136676-Thumbnail Image.png
Description
How are perceptions of morality and disgust regarding meat consumption related to each other? Which factor is more salient in determining one's willingness to eat the meat of a specific animal? How do these answers vary across religious groups? This study investigates the ways that concepts like morality and disgust

How are perceptions of morality and disgust regarding meat consumption related to each other? Which factor is more salient in determining one's willingness to eat the meat of a specific animal? How do these answers vary across religious groups? This study investigates the ways that concepts like morality and disgust are related to food preferences and hopes to shed light on the mechanisms that enforce culturally sanctioned food taboos. The study compares 4 groups of people in the U.S.: Christians (n = 39), Hindus (n = 29), Jews (n = 23), and non-religious people (n = 63). A total of 154 participants were given surveys in which they rated their feelings about eating various animals. Data from Christian and non-religious groups exhibited similar patterns such as a high likelihood of eating a given animal when starving, while results from Jews and Hindus were consistent with their religion's respective food taboos. Despite these differences, morality and disgust are strongly correlated with one another in almost all instances. Moreover, morality and disgust are almost equally important considerations when determining willingness to eat when starving.
ContributorsParekh, Shaili Rajul (Author) / Hruschka, Daniel (Thesis director) / Jacobs, Mark (Committee member) / Barrett, The Honors College (Contributor) / School of Nutrition and Health Promotion (Contributor) / School of Human Evolution and Social Change (Contributor) / Hugh Downs School of Human Communication (Contributor)
Created2014-12
137151-Thumbnail Image.png
Description
Social structure is the product of the costs and benefits of group living. Dyadic social bonds in female chacma baboons are strong and long-standing, conferring fitness benefits upon both individuals while contributing to a greater social structure. Longitudinal grooming data collected from 2001-2007 from Moremi Game Reserve, Botswana, illuminate social

Social structure is the product of the costs and benefits of group living. Dyadic social bonds in female chacma baboons are strong and long-standing, conferring fitness benefits upon both individuals while contributing to a greater social structure. Longitudinal grooming data collected from 2001-2007 from Moremi Game Reserve, Botswana, illuminate social network dynamics of 50 female chacma baboons. Utilizing social network analysis (SNA), we analyzed social structure above the level of the dyad to see if attribute data (age, rank, and number of close female kin) was predictive of network location. Our SNA data was longitudinal, unbalanced, and continuous. We therefore used linear mixed-effects models (LMEs) and respective AIC/BIC values to choose the most likely predictive attributes for each SNA metric. From the chosen LMEs, rank was present most often. High rank predicted a higher frequency of outward grooming, an overall lower number of grooming partners, and a less extensive social network. It appears that high-ranking females have a fewer number of social bonds than low-ranking females, but that they are stronger. Considering that enduring social bonds result in increased offspring longevity, future studies include examining the potential adaptive value of weak, transient, more numerous social bonds.
ContributorsBest, Megan Renee (Author) / Silk, Joan B. (Thesis director) / Schaefer, David (Committee member) / Barrett, The Honors College (Contributor) / School of Human Evolution and Social Change (Contributor) / School of Life Sciences (Contributor)
Created2014-05
137046-Thumbnail Image.png
Description
The United States is experiencing an increase in the prevalence and influence of complementary and alternative medicine (CAM) in patient healthcare, reflecting the increasingly positive public and professional attitudes on the use of CAM therapies. Despite the growing presence of CAM in U.S. healthcare, there are still many barriers to

The United States is experiencing an increase in the prevalence and influence of complementary and alternative medicine (CAM) in patient healthcare, reflecting the increasingly positive public and professional attitudes on the use of CAM therapies. Despite the growing presence of CAM in U.S. healthcare, there are still many barriers to integration. This study aims to reveal the attitudes of conventional, integrative and CAM practitioners concerning the major challenges of CAM's integration, explore their proposed solutions, and reveal any discrepancies in these attitudes among different types of practitioners. Twenty-eight practitioners were interviewed on the challenges in the five facets of CAM's integration: integration into hospitals, integration into medical schools, insurance coverage for CAM, licensing & regulation of CAM practitioners, and clinical research in CAM. The overall positive attitudes on the benefits of CAM's integration support previous research on the subject; however, the conventional practitioners were unable to extend these benefits to real-world application, and they were unaware of many of the challenges facing CAM's integration. The CAM practitioners attributed many of the problems facing integration to the inability of CAM's philosophy to comply with the current ideology of medical academia, health insurance model, and laws that govern the licensing and regulation of medical practitioners. The CAM and integrative practitioners perceived there to be a large resistance from conventional practitioners, specifically concerning the integration of CAM into education, providing insurance coverage for CAM, and the licensing and regulation of CAM practitioners. They attributed this to a perceived lack of research on safe and effective treatments in CAM. The conventional practitioner responses reflected this weariness of treatment effectiveness in their responses. However, the CAM and integrative practitioners believed these claims to be largely inaccurate, and constructed by the influence and manipulation of large-scale medical corporations and organizations. The participants believed that more evidence-based research in CAM, and increased public awareness in CAM therapies will force conventional practitioners to increase their knowledge in CAM, helping to alleviate their fears and skepticism of CAM therapies. By easing these concerns, dialogue can occur among practitioners of different modalities that will help to ensure a smooth integration of CAM and will raise the quality of patient healthcare by providing safe and effective resources for alternate forms of treatment.
ContributorsJohnston, Shantele Hanna Lee (Author) / Hruschka, Daniel (Thesis director) / Hurlbut, Ben (Committee member) / Barrett, The Honors College (Contributor) / School of International Letters and Cultures (Contributor) / School of Human Evolution and Social Change (Contributor)
Created2014-05
137769-Thumbnail Image.png
Description
Electrochemical sensors function by detecting electroactive species at the electrode surface of a screen printed sensor. As more force is applied, the concentration of electroactive species at the surface of the sensor increases and a larger current is measured. Thus, when all conditions including voltage are made constant, as in

Electrochemical sensors function by detecting electroactive species at the electrode surface of a screen printed sensor. As more force is applied, the concentration of electroactive species at the surface of the sensor increases and a larger current is measured. Thus, when all conditions including voltage are made constant, as in Amp i-t, a quantifiable current can be read and the force applied can be calculated. Two common electrochemical techniques in which current is measured, cyclic voltammetry(CV) and amperometric i-t(Amp i-t), were used. A compressible sensor capable of transducing a force and acquiring feedback was created.
ContributorsFeldman, Austin Marc (Author) / LaBelle, Jeffrey (Thesis director) / Pizziconi, Vincent (Committee member) / Santello, Marco (Committee member) / Barrett, The Honors College (Contributor) / Harrington Bioengineering Program (Contributor)
Created2013-05
137772-Thumbnail Image.png
Description
As robots become more prevalent, the need is growing for efficient yet stable control systems for applications with humans in the loop. As such, it is a challenge for scientists and engineers to develop robust and agile systems that are capable of detecting instability in teleoperated systems. Despite how much

As robots become more prevalent, the need is growing for efficient yet stable control systems for applications with humans in the loop. As such, it is a challenge for scientists and engineers to develop robust and agile systems that are capable of detecting instability in teleoperated systems. Despite how much research has been done to characterize the spatiotemporal parameters of human arm motions for reaching and gasping, not much has been done to characterize the behavior of human arm motion in response to control errors in a system. The scope of this investigation is to investigate human corrective actions in response to error in an anthropomorphic teleoperated robot limb. Characterizing human corrective actions contributes to the development of control strategies that are capable of mitigating potential instabilities inherent in human-machine control interfaces. Characterization of human corrective actions requires the simulation of a teleoperated anthropomorphic armature and the comparison of a human subject's arm kinematics, in response to error, against the human arm kinematics without error. This was achieved using OpenGL software to simulate a teleoperated robot arm and an NDI motion tracking system to acquire the subject's arm position and orientation. Error was intermittently and programmatically introduced to the virtual robot's joints as the subject attempted to reach for several targets located around the arm. The comparison of error free human arm kinematics to error prone human arm kinematics revealed an addition of a bell shaped velocity peak into the human subject's tangential velocity profile. The size, extent, and location of the additional velocity peak depended on target location and join angle error. Some joint angle and target location combinations do not produce an additional peak but simply maintain the end effector velocity at a low value until the target is reached. Additional joint angle error parameters and degrees of freedom are needed to continue this investigation.
ContributorsBevilacqua, Vincent Frank (Author) / Artemiadis, Panagiotis (Thesis director) / Santello, Marco (Committee member) / Trimble, Steven (Committee member) / Barrett, The Honors College (Contributor) / Mechanical and Aerospace Engineering Program (Contributor)
Created2013-05
137739-Thumbnail Image.png
Description
The role of retention and forgetting of context dependent sensorimotor memory of dexterous manipulation was explored. Human subjects manipulated a U-shaped object by switching the handle to be grasped (context) three times, and then came back two weeks later to lift the same object in the opposite context relative to

The role of retention and forgetting of context dependent sensorimotor memory of dexterous manipulation was explored. Human subjects manipulated a U-shaped object by switching the handle to be grasped (context) three times, and then came back two weeks later to lift the same object in the opposite context relative to that experience on the last block. On each context switch, an interference of the previous block of trials was found resulting in manipulation errors (object tilt). However, no significant re-learning was found two weeks later for the first block of trials (p = 0.826), indicating that the previously observed interference among contexts lasted a very short time. Interestingly, upon switching to the other context, sensorimotor memories again interfered with visually-based planning. This means that the memory of lifting in the first context somehow blocked the memory of lifting in the second context. In addition, the performance in the first trial two weeks later and the previous trial of the same context were not significantly different (p = 0.159). This means that subjects are able to retain long-term sensorimotor memories. Lastly, the last four trials in which subjects switched contexts were not significantly different from each other (p = 0.334). This means that the interference from sensorimotor memories of lifting in opposite contexts was weaker, thus eventually leading to the attainment of steady performance.
ContributorsGaw, Nathan Benjamin (Author) / Santello, Marco (Thesis director) / Helms Tillery, Stephen (Committee member) / Buneo, Christopher (Committee member) / Barrett, The Honors College (Contributor) / School of Mathematical and Statistical Sciences (Contributor) / Harrington Bioengineering Program (Contributor)
Created2013-05