Matching Items (208)
149709-Thumbnail Image.png
Description
The price based marketplace has dominated the construction industry. The majority of owners use price based practices of management (expectation and decision making, control, direction, and inspection.) The price based/management and control paradigm has not worked. Clients have now been moving toward the best value environment (hire

The price based marketplace has dominated the construction industry. The majority of owners use price based practices of management (expectation and decision making, control, direction, and inspection.) The price based/management and control paradigm has not worked. Clients have now been moving toward the best value environment (hire contractors who know what they are doing, who preplan, and manage and minimize risk and deviation.) Owners are trying to move from client direction and control to hiring an expert and allowing them to do the quality control/risk management. The movement of environments changes the paradigm for the contractors from a reactive to a proactive, from a bureaucratic
on-accountable to an accountable position, from a relationship based
on-measuring to a measuring entity, and to a contractor who manages and minimizes the risk that they do not control. Years of price based practices have caused poor quality and low performance in the construction industry. This research identifies what is a best value contractor or vendor, what factors make up a best value vendor, and the methodology to transform a vendor to a best value vendor. It will use deductive logic, a case study to confirm the logic and the proposed methodology.
ContributorsPauli, Michele (Author) / Kashiwagi, Dean (Thesis advisor) / Sullivan, Kenneth (Committee member) / Badger, William (Committee member) / Arizona State University (Publisher)
Created2011
150372-Thumbnail Image.png
Description
As global competition continues to grow more disruptive, organizational change is an ever-present reality that affects companies in all industries at both the operational and strategic level. Organizational change capabilities have become a necessary aspect of existence for organizations in all industries worldwide. Research suggests that more than half of

As global competition continues to grow more disruptive, organizational change is an ever-present reality that affects companies in all industries at both the operational and strategic level. Organizational change capabilities have become a necessary aspect of existence for organizations in all industries worldwide. Research suggests that more than half of all organizational change efforts fail to achieve their original intended results, with some studies quoting failure rates as high as 70 percent. Exasperating this problem is the fact that no single change methodology has been universally accepted. This thesis examines two aspect of organizational change: the implementation of tactical and strategic initiatives, primarily focusing on successful tactical implementation techniques. This research proposed that tactical issues typically dominate the focus of change agents and recipients alike, often to the detriment of strategic level initiatives that are vital to the overall value and success of the organizational change effort. The Delphi method was employed to develop a tool to facilitate the initial implementation of organizational change such that tactical barriers were minimized and available resources for strategic initiatives were maximized. Feedback from two expert groups of change agents and change facilitators was solicited to develop the tool and evaluate its impact. Preliminary pilot testing of the tool confirmed the proposal and successfully served to minimize tactical barriers to organizational change.
ContributorsLines, Brian (Author) / Sullivan, Kenneth T. (Thesis advisor) / Badger, William (Committee member) / Kashiwagi, Dean (Committee member) / Arizona State University (Publisher)
Created2011
Description
Filtration for microfluidic sample-collection devices is desirable for sample selection, concentration, preprocessing, and downstream manipulation, but microfabricating the required sub-micrometer filtration structure is an elaborate process. This thesis presents a simple method to fabricate polydimethylsiloxane (PDMS) devices with an integrated membrane filter that will sample, lyse, and extract the DNA

Filtration for microfluidic sample-collection devices is desirable for sample selection, concentration, preprocessing, and downstream manipulation, but microfabricating the required sub-micrometer filtration structure is an elaborate process. This thesis presents a simple method to fabricate polydimethylsiloxane (PDMS) devices with an integrated membrane filter that will sample, lyse, and extract the DNA from microorganisms in aqueous environments. An off-the-shelf membrane filter disc was embedded in a PDMS layer and sequentially bound with other PDMS channel layers. No leakage was observed during filtration. This device was validated by concentrating a large amount of cyanobacterium Synechocystis in simulated sample water with consistent performance across devices. After accumulating sufficient biomass on the filter, a sequential electrochemical lysing process was performed by applying 5VDC across the filter. This device was further evaluated by delivering several samples of differing concentrations of cyanobacterium Synechocystis then quantifying the DNA using real-time PCR. Lastly, an environmental sample was run through the device and the amount of photosynthetic microorganisms present in the water was determined. The major breakthroughs in this design are low energy demand, cheap materials, simple design, straightforward fabrication, and robust performance, together enabling wide-utility of similar chip-based devices for field-deployable operations in environmental micro-biotechnology.
ContributorsLecluse, Aurelie (Author) / Meldrum, Deirdre (Thesis advisor) / Chao, Joseph (Thesis advisor) / Westerhoff, Paul (Committee member) / Arizona State University (Publisher)
Created2011
Description
Single cell phenotypic heterogeneity studies reveal more information about the pathogenesis process than conventional bulk methods. Furthermore, investigation of the individual cellular response mechanism during rapid environmental changes can only be achieved at single cell level. By enabling the study of cellular morphology, a single cell three-dimensional (3D) imaging system

Single cell phenotypic heterogeneity studies reveal more information about the pathogenesis process than conventional bulk methods. Furthermore, investigation of the individual cellular response mechanism during rapid environmental changes can only be achieved at single cell level. By enabling the study of cellular morphology, a single cell three-dimensional (3D) imaging system can be used to diagnose fatal diseases, such as cancer, at an early stage. One proven method, CellCT, accomplishes 3D imaging by rotating a single cell around a fixed axis. However, some existing cell rotating mechanisms require either intricate microfabrication, and some fail to provide a suitable environment for living cells. This thesis develops a microvorterx chamber that allows living cells to be rotated by hydrodynamic alone while facilitating imaging access. In this thesis work, 1) the new chamber design was developed through numerical simulation. Simulations revealed that in order to form a microvortex in the side chamber, the ratio of the chamber opening to the channel width must be smaller than one. After comparing different chamber designs, the trapezoidal side chamber was selected because it demonstrated controllable circulation and met the imaging requirements. Microvortex properties were not sensitive to the chambers with interface angles ranging from 0.32 to 0.64. A similar trend was observed when chamber heights were larger than chamber opening. 2) Micro-particle image velocimetry was used to characterize microvortices and validate simulation results. Agreement between experimentation and simulation confirmed that numerical simulation was an effective method for chamber design. 3) Finally, cell rotation experiments were performed in the trapezoidal side chamber. The experimental results demonstrated cell rotational rates ranging from 12 to 29 rpm for regular cells. With a volumetric flow rate of 0.5 µL/s, an irregular cell rotated at a mean rate of 97 ± 3 rpm. Rotational rates can be changed by altering inlet flow rates.
ContributorsZhang, Wenjie (Author) / Frakes, David (Thesis advisor) / Meldrum, Deirdre (Thesis advisor) / Chao, Shih-hui (Committee member) / Wang, Xiao (Committee member) / Arizona State University (Publisher)
Created2011
149856-Thumbnail Image.png
Description
Nucleosomes are the basic repetitive unit of eukaryotic chromatin and are responsible for packing DNA inside the nucleus of the cell. They consist of a complex of eight histone proteins (two copies of four proteins H2A, H2B, H3 and H4) around which 147 base pairs of DNA are wrapped

Nucleosomes are the basic repetitive unit of eukaryotic chromatin and are responsible for packing DNA inside the nucleus of the cell. They consist of a complex of eight histone proteins (two copies of four proteins H2A, H2B, H3 and H4) around which 147 base pairs of DNA are wrapped in ~1.67 superhelical turns. Although the nucleosomes are stable protein-DNA complexes, they undergo spontaneous conformational changes that occur in an asynchronous fashion. This conformational dynamics, defined by the "site-exposure" model, involves the DNA unwrapping from the protein core and exposing itself transiently before wrapping back. Physiologically, this allows regulatory proteins to bind to their target DNA sites during cellular processes like replication, DNA repair and transcription. Traditional biochemical assays have stablished the equilibrium constants for the accessibility to various sites along the length of the nucleosomal DNA, from its end to the middle of the dyad axis. Using fluorescence correlation spectroscopy (FCS), we have established the position dependent rewrapping rates for nucleosomes. We have also used Monte Carlo simulation methods to analyze the applicability of FRET fluctuation spectroscopy towards conformational dynamics, specifically motivated by nucleosome dynamics. Another important conformational change that is involved in cellular processes is the disassembly of nucleosome into its constituent particles. The exact pathway adopted by nucleosomes is still not clear. We used dual color fluorescence correlation spectroscopy to study the intermediates during nucleosome disassembly induced by changing ionic strength. Studying the nature of nucleosome conformational change and the kinetics is very important in understanding gene expression. The results from this thesis give a quantitative description to the basic unit of the chromatin.
ContributorsGurunathan, Kaushik (Author) / Levitus, Marcia (Thesis advisor) / Lindsay, Stuart (Committee member) / Woodbury, Neal (Committee member) / Yan, Hao (Committee member) / Arizona State University (Publisher)
Created2011
150133-Thumbnail Image.png
Description
ABSTRACT Facility managers have an important job in today's competitive business world by caring for the backbone of the corporation's capital. Maintaining assets and the support efforts cause facility managers to fight an uphill battle to prove the worth of their organizations. This thesis will discuss the important and flexible

ABSTRACT Facility managers have an important job in today's competitive business world by caring for the backbone of the corporation's capital. Maintaining assets and the support efforts cause facility managers to fight an uphill battle to prove the worth of their organizations. This thesis will discuss the important and flexible use of measurement and leadership reports and the benefits of justifying the work required to maintain or upgrade a facility. The task is streamlined by invoking accountability to subject experts. The facility manager must trust in the ability of his or her work force to get the job done. However, with accountability comes increased risk. Even though accountability may not alleviate total control or cease reactionary actions, facility managers can develop key leadership based reports to reassign accountability and measure subject matter experts while simultaneously reducing reactionary actions leading to increased cost. Identifying and reassigning risk that are not controlled to subject matter experts is imperative for effective facility management leadership and allows facility managers to create an accurate and solid facility management plan, supports the organization's succession plan, and allows the organization to focus on key competencies.
ContributorsTellefsen, Thor (Author) / Sullivan, Kenneth (Thesis advisor) / Kashiwagi, Dean (Committee member) / Badger, William (Committee member) / Arizona State University (Publisher)
Created2011
152185-Thumbnail Image.png
Description
Over the past couple of decades, quality has been an area of increased focus. Multiple models and approaches have been proposed to measure the quality in the construction industry. This paper focuses on determining the quality of one of the types of roofing systems used in the construction industry, i.e.

Over the past couple of decades, quality has been an area of increased focus. Multiple models and approaches have been proposed to measure the quality in the construction industry. This paper focuses on determining the quality of one of the types of roofing systems used in the construction industry, i.e. Sprayed Polyurethane Foam Roofs (SPF roofs). Thirty seven urethane coated SPF roofs that were installed in 2005 / 2006 were visually inspected to measure the percentage of blisters and repairs three times over a period of 4 year, 6 year and 7 year marks. A repairing criteria was established after a 6 year mark based on the data that were reported to contractors as vulnerable roofs. Furthermore, the relation between four possible contributing time of installation factors i.e. contractor, demographics, season, and difficulty (number of penetrations and size of the roof in square feet) that could affect the quality of the roof was determined. Demographics and difficulty did not affect the quality of the roofs whereas the contractor and the season when the roof was installed did affect the quality of the roofs.
ContributorsGajjar, Dhaval (Author) / Kashiwagi, Dean (Thesis advisor) / Sullivan, Kenneth (Committee member) / Badger, William (Committee member) / Arizona State University (Publisher)
Created2013
151304-Thumbnail Image.png
Description
Food system and health characteristics were evaluated across the last Waorani hunter-gatherer group in Amazonian Ecuador and a remote neighboring Kichwa indigenous subsistence agriculture community. Hunter-gatherer food systems like the Waorani foragers may not only be nutritionally, but also pharmaceutically beneficial because of high dietary intake of varied plant phytochemical

Food system and health characteristics were evaluated across the last Waorani hunter-gatherer group in Amazonian Ecuador and a remote neighboring Kichwa indigenous subsistence agriculture community. Hunter-gatherer food systems like the Waorani foragers may not only be nutritionally, but also pharmaceutically beneficial because of high dietary intake of varied plant phytochemical compounds. A modern diet that reduces these dietary plant defense phytochemicals below levels typical in human evolutionary history may leave humans vulnerable to diseases that were controlled through a foraging diet. Few studies consider the health impact of the recent drastic reduction of plant phytochemical content in the modern global food system, which has eliminated essential components of food because they are not considered "nutrients". The antimicrobial and anti-inflammatory nature of the food system may not only regulate infectious pathogens and inflammatory disease, but also support beneficial microbes in human hosts, reducing vulnerability to chronic diseases. Waorani foragers seem immune to certain infections with very low rates of chronic disease. Does returning to certain characteristics of a foraging food system begin to restore the human body microbe balance and inflammatory response to evolutionary norms, and if so, what implication does this have for the treatment of disease? Several years of data on dietary and health differences across the foragers and the farmers was gathered. There were major differences in health outcomes across the board. In the Waorani forager group there were no signs of infection in serious wounds such as 3rd degree burns and spear wounds. The foragers had one-degree lower body temperature than the farmers. The Waorani had an absence of signs of chronic diseases including vision and blood pressure that did not change markedly with age while Kichwa farmers suffered from both chronic diseases and physiological indicators of aging. In the Waorani forager population, there was an absence of many common regional infectious diseases, from helminthes to staphylococcus. Study design helped control for confounders (exercise, environment, genetic factors, non-phytochemical dietary intake). This study provides evidence of the major role total phytochemical dietary intake plays in human health, often not considered by policymakers and nutritional and agricultural scientists.
ContributorsLondon, Douglas (Author) / Tsuda, Takeyuki (Thesis advisor) / Beezhold, Bonnie L (Committee member) / Hruschka, Daniel (Committee member) / Eder, James (Committee member) / Arizona State University (Publisher)
Created2012
151493-Thumbnail Image.png
Description
Healthy mitochondria are essential for cell survival. Described herein is the synthesis of a family of novel aminoquinone antioxidants designed to alleviate oxidative stress and prevent the impairment of cellular function. In addition, a library of bleomycin disaccharide analogues has also been synthesized to better probe the tumor targeting properties

Healthy mitochondria are essential for cell survival. Described herein is the synthesis of a family of novel aminoquinone antioxidants designed to alleviate oxidative stress and prevent the impairment of cellular function. In addition, a library of bleomycin disaccharide analogues has also been synthesized to better probe the tumor targeting properties of bleomycin. The first study involves the synthesis of a benzoquinone natural product and analogues that closely resemble the redox core of the natural product geldanamycin. The synthesized 5-amino-3-tridecyl-1,4-benzoquinone antioxidants were tested for their ability to protect Friedreich's ataxia (FRDA) lymphocytes from induced oxidative stress. Some of the analogues synthesized conferred cytoprotection in a dose-dependent manner in FRDA lymphocytes at micromolar concentrations. The biological assays suggest that the modification of the 2-hydroxyl and N-(3-carboxypropyl) groups in the natural product can improve its antioxidant activity and significantly enhance its ability to protect mitochondrial function under conditions of oxidative stress. The second project focused on the synthesis of a library of bleomycin disaccharide-dye conjugates and monitored their cellular uptake by fluorescence microscopy. The studies reveal that the position of the carbamoyl group plays an important role in modulating the cellular uptake of the disaccharide. It also led to the discovery of novel disaccharides with improved tumor selectivity.
ContributorsMathilakathu Madathil, Manikandadas (Author) / Hecht, Sidney M. (Thesis advisor) / Rose, Seth (Committee member) / Woodbury, Neal (Committee member) / Arizona State University (Publisher)
Created2013
Description
Laboratory automation systems have seen a lot of technological advances in recent times. As a result, the software that is written for them are becoming increasingly sophisticated. Existing software architectures and standards are targeted to a wider domain of software development and need to be customized in order to use

Laboratory automation systems have seen a lot of technological advances in recent times. As a result, the software that is written for them are becoming increasingly sophisticated. Existing software architectures and standards are targeted to a wider domain of software development and need to be customized in order to use them for developing software for laboratory automation systems. This thesis proposes an architecture that is based on existing software architectural paradigms and is specifically tailored to developing software for a laboratory automation system. The architecture is based on fairly autonomous software components that can be distributed across multiple computers. The components in the architecture make use of asynchronous communication methodologies that are facilitated by passing messages between one another. The architecture can be used to develop software that is distributed, responsive and thread-safe. The thesis also proposes a framework that has been developed to implement the ideas proposed by the architecture. The framework is used to develop software that is scalable, distributed, responsive and thread-safe. The framework currently has components to control very commonly used laboratory automation devices such as mechanical stages, cameras, and also to do common laboratory automation functionalities such as imaging.
ContributorsKuppuswamy, Venkataramanan (Author) / Meldrum, Deirdre (Thesis advisor) / Collofello, James (Thesis advisor) / Sarjoughian, Hessam S. (Committee member) / Johnson, Roger (Committee member) / Arizona State University (Publisher)
Created2012