Matching Items (34)
161524-Thumbnail Image.png
Description
Contact tracing has been shown to be effective in limiting the rate of spread of infectious diseases like COVID-19. Several solutions based on the exchange of random, anonymous tokens between users’ mobile devices via Bluetooth, or using users’ location traces have been proposed and deployed. These solutions require the user

Contact tracing has been shown to be effective in limiting the rate of spread of infectious diseases like COVID-19. Several solutions based on the exchange of random, anonymous tokens between users’ mobile devices via Bluetooth, or using users’ location traces have been proposed and deployed. These solutions require the user device to download the tokens (or traces) of infected users from the server. The user tokens are matched with infected users’ tokens to determine an exposure event. These solutions are vulnerable to a range of security and privacy issues, and require large downloads, thus warranting the need for an efficient protocol with strong privacy guarantees. Moreover, these solutions are based solely on proximity between user devices, while COVID-19 can spread from common surfaces as well. Knowledge of areas with a large number of visits by infected users (hotspots) can help inform users to avoid those areas and thereby reduce surface transmission. This thesis proposes a strong secure system for contact tracing and hotspots histogram computation. The contact tracing protocol uses a combination of Bluetooth Low Energy and Global Positioning System (GPS) location data. A novel and deployment-friendly Delegated Private Set Intersection Cardinality protocol is proposed for efficient and secure server aided matching of tokens. Secure aggregation techniques are used to allow the server to learn areas of high risk from location traces of diagnosed users, without revealing any individual user’s location history.
ContributorsSurana, Chetan (Author) / Trieu, Ni (Thesis advisor) / Sankar, Lalitha (Committee member) / Berisha, Visar (Committee member) / Zhao, Ming (Committee member) / Arizona State University (Publisher)
Created2021
171923-Thumbnail Image.png
Description
Modern physical systems are experiencing tremendous evolutions with growing size, more and more complex structures, and the incorporation of new devices. This calls for better planning, monitoring, and control. However, achieving these goals is challenging since the system knowledge (e.g., system structures and edge parameters) may be unavailable for a

Modern physical systems are experiencing tremendous evolutions with growing size, more and more complex structures, and the incorporation of new devices. This calls for better planning, monitoring, and control. However, achieving these goals is challenging since the system knowledge (e.g., system structures and edge parameters) may be unavailable for a normal system, let alone some dynamic changes like maintenance, reconfigurations, and events, etc. Therefore, extracting system knowledge becomes a central topic. Luckily, advanced metering techniques bring numerous data, leading to the emergence of Machine Learning (ML) methods with efficient learning and fast inference. This work tries to propose a systematic framework of ML-based methods to learn system knowledge under three what-if scenarios: (i) What if the system is normally operated? (ii) What if the system suffers dynamic interventions? (iii) What if the system is new with limited data? For each case, this thesis proposes principled solutions with extensive experiments. Chapter 2 tackles scenario (i) and the golden rule is to learn an ML model that maintains physical consistency, bringing high extrapolation capacity for changing operational conditions. The key finding is that physical consistency can be linked to convexity, a central concept in optimization. Therefore, convexified ML designs are proposed and the global optimality implies faithfulness to the underlying physics. Chapter 3 handles scenario (ii) and the goal is to identify the event time, type, and locations. The problem is formalized as multi-class classification with special attention to accuracy and speed. Subsequently, Chapter 3 builds an ensemble learning framework to aggregate different ML models for better prediction. Next, to tackle high-volume data quickly, a tensor as the multi-dimensional array is used to store and process data, yielding compact and informative vectors for fast inference. Finally, if no labels exist, Chapter 3 uses physical properties to generate labels for learning. Chapter 4 deals with scenario (iii) and a doable process is to transfer knowledge from similar systems, under the framework of Transfer Learning (TL). Chapter 4 proposes cutting-edge system-level TL by considering the network structure, complex spatial-temporal correlations, and different physical information.
ContributorsLi, Haoran (Author) / Weng, Yang (Thesis advisor) / Tong, Hanghang (Committee member) / Dasarathy, Gautam (Committee member) / Sankar, Lalitha (Committee member) / Arizona State University (Publisher)
Created2022
154355-Thumbnail Image.png
Description
Two thirds of the U.S. power systems are operated under market structures. A good market design should maximize social welfare and give market participants proper incentives to follow market solutions. Pricing schemes play very important roles in market design.

Locational marginal pricing scheme is the core pricing scheme in energy markets.

Two thirds of the U.S. power systems are operated under market structures. A good market design should maximize social welfare and give market participants proper incentives to follow market solutions. Pricing schemes play very important roles in market design.

Locational marginal pricing scheme is the core pricing scheme in energy markets. Locational marginal prices are good pricing signals for dispatch marginal costs. However, the locational marginal prices alone are not incentive compatible since energy markets are non-convex markets. Locational marginal prices capture dispatch costs but fail to capture commitment costs such as startup cost, no-load cost, and shutdown cost. As a result, uplift payments are paid to generators in markets in order to provide incentives for generators to follow market solutions. The uplift payments distort pricing signals.

In this thesis, pricing schemes in electric energy markets are studied. In the first part, convex hull pricing scheme is studied and the pricing model is extended with network constraints. The subgradient algorithm is applied to solve the pricing model. In the second part, a stochastic dispatchable pricing model is proposed to better address the non-convexity and uncertainty issues in day-ahead energy markets. In the third part, an energy storage arbitrage model with the current locational marginal price scheme is studied. Numerical test cases are studied to show the arguments in this thesis.

The overall market and pricing scheme design is a very complex problem. This thesis gives a thorough overview of pricing schemes in day-ahead energy markets and addressed several key issues in the markets. New pricing schemes are proposed to improve market efficiency.
ContributorsLi, Chao (Author) / Hedman, Kory (Thesis advisor) / Sankar, Lalitha (Committee member) / Scaglione, Anna (Committee member) / Arizona State University (Publisher)
Created2016
154323-Thumbnail Image.png
Description
This work presents research on practices in the day-ahead electric energy market, including replication practices and reliability coordinators used by some market operators to demonstrate the impact these practices have on market outcomes. The practice of constraint relaxations similar to those an Independent System Operator (ISO) might perform in day-ahead

This work presents research on practices in the day-ahead electric energy market, including replication practices and reliability coordinators used by some market operators to demonstrate the impact these practices have on market outcomes. The practice of constraint relaxations similar to those an Independent System Operator (ISO) might perform in day-ahead market models is implemented. The benefits of these practices are well understood by the industry; however, the implications these practices have on market outcomes and system security have not been thoroughly investigated. By solving a day-ahead market model with and without select constraint relaxations and comparing the resulting market outcomes and possible effects on system security, the effect of these constraint relaxation practices is demonstrated.

Proposed market solutions are often infeasible because constraint relaxation practices and approximations that are incorporated into market models. Therefore, the dispatch solution must be corrected to ensure its feasibility. The practice of correcting the proposed dispatch solution after the market is solved is known as out-of-market corrections (OMCs), defined as any action an operator takes that modifies a proposed day-ahead dispatch solution to ensure operating and reliability requirements. The way in which OMCs affect market outcomes is illustrated through the use of different corrective procedures. The objective of the work presented is to demonstrate the implications of these industry practices and assess the impact these practices have on market outcomes.
ContributorsAl-Abdullah, Yousef Mohammad (Author) / Hedman, Kory W (Thesis advisor) / Vittal, Vijay (Thesis advisor) / Heydt, Gerald T (Committee member) / Sankar, Lalitha (Committee member) / Arizona State University (Publisher)
Created2016
157937-Thumbnail Image.png
Description
Signal compressed using classical compression methods can be acquired using brute force (i.e. searching for non-zero entries in component-wise). However, sparse solutions require combinatorial searches of high computations. In this thesis, instead, two Bayesian approaches are considered to recover a sparse vector from underdetermined noisy measurements. The first is constructed

Signal compressed using classical compression methods can be acquired using brute force (i.e. searching for non-zero entries in component-wise). However, sparse solutions require combinatorial searches of high computations. In this thesis, instead, two Bayesian approaches are considered to recover a sparse vector from underdetermined noisy measurements. The first is constructed using a Bernoulli-Gaussian (BG) prior distribution and is assumed to be the true generative model. The second is constructed using a Gamma-Normal (GN) prior distribution and is, therefore, a different (i.e. misspecified) model. To estimate the posterior distribution for the correctly specified scenario, an algorithm based on generalized approximated message passing (GAMP) is constructed, while an algorithm based on sparse Bayesian learning (SBL) is used for the misspecified scenario. Recovering sparse signal using Bayesian framework is one class of algorithms to solve the sparse problem. All classes of algorithms aim to get around the high computations associated with the combinatorial searches. Compressive sensing (CS) is a widely-used terminology attributed to optimize the sparse problem and its applications. Applications such as magnetic resonance imaging (MRI), image acquisition in radar imaging, and facial recognition. In CS literature, the target vector can be recovered either by optimizing an objective function using point estimation, or recovering a distribution of the sparse vector using Bayesian estimation. Although Bayesian framework provides an extra degree of freedom to assume a distribution that is directly applicable to the problem of interest, it is hard to find a theoretical guarantee of convergence. This limitation has shifted some of researches to use a non-Bayesian framework. This thesis tries to close this gab by proposing a Bayesian framework with a suggested theoretical bound for the assumed, not necessarily correct, distribution. In the simulation study, a general lower Bayesian Cram\'er-Rao bound (BCRB) bound is extracted along with misspecified Bayesian Cram\'er-Rao bound (MBCRB) for GN model. Both bounds are validated using mean square error (MSE) performances of the aforementioned algorithms. Also, a quantification of the performance in terms of gains versus losses is introduced as one main finding of this report.
ContributorsAlhowaish, Abdulhakim (Author) / Richmond, Christ D (Thesis advisor) / Papandreou-Suppappola, Antonia (Committee member) / Sankar, Lalitha (Committee member) / Arizona State University (Publisher)
Created2019
157976-Thumbnail Image.png
Description
The open nature of the wireless communication medium makes it inherently vulnerable to an active attack, wherein a malicious adversary (or jammer) transmits into the medium to disrupt the operation of the legitimate users. Therefore, developing techniques to manage the presence of a jammer and to characterize the effect of

The open nature of the wireless communication medium makes it inherently vulnerable to an active attack, wherein a malicious adversary (or jammer) transmits into the medium to disrupt the operation of the legitimate users. Therefore, developing techniques to manage the presence of a jammer and to characterize the effect of an attacker on the fundamental limits of wireless communication networks is important. This dissertation studies various Gaussian communication networks in the presence of such an adversarial jammer.

First of all, a standard Gaussian channel is considered in the presence of a jammer, known as a Gaussian arbitrarily-varying channel, but with list-decoding at the receiver. The receiver decodes a list of messages, instead of only one message, with the goal of the correct message being an element of the list. The capacity is characterized, and it is shown that under some transmitter's power constraints the adversary is able to suspend the communication between the legitimate users and make the capacity zero.

Next, generalized packing lemmas are introduced for Gaussian adversarial channels to achieve the capacity bounds for three Gaussian multi-user channels in the presence of adversarial jammers. Inner and outer bounds on the capacity regions of Gaussian multiple-access channels, Gaussian broadcast channels, and Gaussian interference channels are derived in the presence of malicious jammers. For the Gaussian multiple-access channels with jammer, the capacity bounds coincide. In this dissertation, the adversaries can send any arbitrary signals to the channel while none of the transmitter and the receiver knows the adversarial signals' distribution.

Finally, the capacity of the standard point-to-point Gaussian fading channel in the presence of one jammer is investigated under multiple scenarios of channel state information availability, which is the knowledge of exact fading coefficients. The channel state information is always partially or fully known at the receiver to decode the message while the transmitter or the adversary may or may not have access to this information. Here, the adversary model is the same as the previous cases with no knowledge about the user's transmitted signal except possibly the knowledge of the fading path.
ContributorsHosseinigoki, Fatemeh (Author) / Kosut, Oliver (Thesis advisor) / Zhang, Junshan (Committee member) / Sankar, Lalitha (Committee member) / Bliss, Daniel (Committee member) / Arizona State University (Publisher)
Created2019
158139-Thumbnail Image.png
Description
Modern digital applications have significantly increased the leakage of private and sensitive personal data. While worst-case measures of leakage such as Differential Privacy (DP) provide the strongest guarantees, when utility matters, average-case information-theoretic measures can be more relevant. However, most such information-theoretic measures do not have clear operational meanings. This

Modern digital applications have significantly increased the leakage of private and sensitive personal data. While worst-case measures of leakage such as Differential Privacy (DP) provide the strongest guarantees, when utility matters, average-case information-theoretic measures can be more relevant. However, most such information-theoretic measures do not have clear operational meanings. This dissertation addresses this challenge.

This work introduces a tunable leakage measure called maximal $\alpha$-leakage which quantifies the maximal gain of an adversary in inferring any function of a data set. The inferential capability of the adversary is modeled by a class of loss functions, namely, $\alpha$-loss. The choice of $\alpha$ determines specific adversarial actions ranging from refining a belief for $\alpha =1$ to guessing the best posterior for $\alpha = \infty$, and for the two specific values maximal $\alpha$-leakage simplifies to mutual information and maximal leakage, respectively. Maximal $\alpha$-leakage is proved to have a composition property and be robust to side information.

There is a fundamental disjoint between theoretical measures of information leakages and their applications in practice. This issue is addressed in the second part of this dissertation by proposing a data-driven framework for learning Censored and Fair Universal Representations (CFUR) of data. This framework is formulated as a constrained minimax optimization of the expected $\alpha$-loss where the constraint ensures a measure of the usefulness of the representation. The performance of the CFUR framework with $\alpha=1$ is evaluated on publicly accessible data sets; it is shown that multiple sensitive features can be effectively censored to achieve group fairness via demographic parity while ensuring accuracy for several \textit{a priori} unknown downstream tasks.

Finally, focusing on worst-case measures, novel information-theoretic tools are used to refine the existing relationship between two such measures, $(\epsilon,\delta)$-DP and R\'enyi-DP. Applying these tools to the moments accountant framework, one can track the privacy guarantee achieved by adding Gaussian noise to Stochastic Gradient Descent (SGD) algorithms. Relative to state-of-the-art, for the same privacy budget, this method allows about 100 more SGD rounds for training deep learning models.
ContributorsLiao, Jiachun (Author) / Sankar, Lalitha (Thesis advisor) / Kosut, Oliver (Committee member) / Zhang, Junshan (Committee member) / Dasarathy, Gautam (Committee member) / Arizona State University (Publisher)
Created2020
158293-Thumbnail Image.png
Description
Reliable operation of modern power systems is ensured by an intelligent cyber layer that monitors and controls the physical system. The data collection and transmission is achieved by the supervisory control and data acquisition (SCADA) system, and data processing is performed by the energy management system (EMS). In the recent

Reliable operation of modern power systems is ensured by an intelligent cyber layer that monitors and controls the physical system. The data collection and transmission is achieved by the supervisory control and data acquisition (SCADA) system, and data processing is performed by the energy management system (EMS). In the recent decades, the development of phasor measurement units (PMUs) enables wide area real-time monitoring and control. However, both SCADA-based and PMU-based cyber layers are prone to cyber attacks that can impact system operation and lead to severe physical consequences.

This dissertation studies false data injection (FDI) attacks that are unobservable to bad data detectors (BDD). Prior work has shown that an attacker-defender bi-level linear program (ADBLP) can be used to determine the worst-case consequences of FDI attacks aiming to maximize the physical power flow on a target line. However, the results were only demonstrated on small systems assuming that they are operated with DC optimal power flow (OPF). This dissertation is divided into four parts to thoroughly understand the consequences of these attacks as well as develop countermeasures.

The first part focuses on evaluating the vulnerability of large-scale power systems to FDI attacks. The solution technique introduced in prior work to solve the ADBLP is intractable on large-scale systems due to the large number of binary variables. Four new computationally efficient algorithms are presented to solve this problem.

The second part studies vulnerability of N-1 reliable power systems operated by state-of-the-art EMSs commonly used in practice, specifically real-time contingency analysis (RTCA), and security-constrained economic dispatch (SCED). An ADBLP is formulated with detailed assumptions on attacker's knowledge and system operations.

The third part considers FDI attacks on PMU measurements that have strong temporal correlations due to high data rate. It is shown that predictive filters can detect suddenly injected attacks, but not gradually ramping attacks.

The last part proposes a machine learning-based attack detection framework consists of a support vector regression (SVR) load predictor that predicts loads by exploiting both spatial and temporal correlations, and a subsequent support vector machine (SVM) attack detector to determine the existence of attacks.
ContributorsChu, Zhigang (Author) / Kosut, Oliver (Thesis advisor) / Sankar, Lalitha (Committee member) / Scaglione, Anna (Committee member) / Pal, Anamitra (Committee member) / Arizona State University (Publisher)
Created2020
161574-Thumbnail Image.png
Description
As the field of machine learning increasingly provides real value to power system operations, the availability of rich measurement datasets has become crucial for the development of new applications and technologies. This dissertation focuses on the use of time-series load data for the design of novel data-driven algorithms. Loads are

As the field of machine learning increasingly provides real value to power system operations, the availability of rich measurement datasets has become crucial for the development of new applications and technologies. This dissertation focuses on the use of time-series load data for the design of novel data-driven algorithms. Loads are one of the main factors driving the behavior of a power system and they depend on external phenomena which are not captured by traditional simulation tools. Thus, accurate models that capture the fundamental characteristics of time-series load dataare necessary. In the first part of this dissertation, an example of successful application of machine learning algorithms that leverage load data is presented. Prior work has shown that power systems energy management systems are vulnerable to false data injection attacks against state estimation. Here, a data-driven approach for the detection and localization of such attacks is proposed. The detector uses historical data to learn the normal behavior of the loads in a system and subsequently identify if any of the real-time observed measurements are being manipulated by an attacker. The second part of this work focuses on the design of generative models for time-series load data. Two separate techniques are used to learn load behaviors from real datasets and exploiting them to generate realistic synthetic data. The first approach is based on principal component analysis (PCA), which is used to extract common temporal patterns from real data. The second method leverages conditional generative adversarial networks (cGANs) and it overcomes the limitations of the PCA-based model while providing greater and more nuanced control on the generation of specific types of load profiles. Finally, these two classes of models are combined in a multi-resolution generative scheme which is capable of producing any amount of time-series load data at any sampling resolution, for lengths ranging from a few seconds to years.
ContributorsPinceti, Andrea (Author) / Sankar, Lalitha (Thesis advisor) / Kosut, Oliver (Committee member) / Pal, Anamitra (Committee member) / Weng, Yang (Committee member) / Arizona State University (Publisher)
Created2021
161579-Thumbnail Image.png
Description
Infectious diseases spread at a rapid rate, due to the increasing mobility of the human population. It is important to have a variety of containment and assessment strategies to prevent and limit their spread. In the on-going COVID-19 pandemic, telehealth services including daily health surveys are used to study the

Infectious diseases spread at a rapid rate, due to the increasing mobility of the human population. It is important to have a variety of containment and assessment strategies to prevent and limit their spread. In the on-going COVID-19 pandemic, telehealth services including daily health surveys are used to study the prevalence and severity of the disease. Daily health surveys can also help to study the progression and fluctuation of symptoms as recalling, tracking, and explaining symptoms to doctors can often be challenging for patients. Data aggregates collected from the daily health surveys can be used to identify the surge of a disease in a community. This thesis enhances a well-known boosting algorithm, XGBoost, to predict COVID-19 from the anonymized self-reported survey responses provided by Carnegie Mellon University (CMU) - Delphi research group in collaboration with Facebook. Despite the tremendous COVID-19 surge in the United States, this survey dataset is highly imbalanced with 84% negative COVID-19 cases and 16% positive cases. It is tedious to learn from an imbalanced dataset, especially when the dataset could also be noisy, as seen commonly in self-reported surveys. This thesis addresses these challenges by enhancing XGBoost with a tunable loss function, ?-loss, that interpolates between the exponential loss (? = 1/2), the log-loss (? = 1), and the 0-1 loss (? = ∞). Results show that tuning XGBoost with ?-loss can enhance performance over the standard XGBoost with log-loss (? = 1).
ContributorsVikash Babu, Gokulan (Author) / Sankar, Lalitha (Thesis advisor) / Berisha, Visar (Committee member) / Zhao, Ming (Committee member) / Trieu, Ni (Committee member) / Arizona State University (Publisher)
Created2021