Matching Items (74)
Filtering by

Clear all filters

171906-Thumbnail Image.png
Description
Infrastructure systems are facing non-stationary challenges that stem from climate change and the increasingly complex interactions between the social, ecological, and technological systems (SETSs). It is crucial for transportation infrastructures—which enable residents to access opportunities and foster prosperity, quality of life, and social connections—to be resilient under these non-stationary challenges.

Infrastructure systems are facing non-stationary challenges that stem from climate change and the increasingly complex interactions between the social, ecological, and technological systems (SETSs). It is crucial for transportation infrastructures—which enable residents to access opportunities and foster prosperity, quality of life, and social connections—to be resilient under these non-stationary challenges. Vulnerability assessment (VA) examines the potential consequences a system is likely to experience due to exposure to perturbation or stressors and lack of the capacity to adapt. Post-fire debris flow and heat represent particularly challenging problems for infrastructure and users in the arid U.S. West. Post-fire debris flow, which is manifested with heat and drought, produces powerful runoff threatening physical transportation infrastructures. And heat waves have devastating health effects on transportation infrastructure users, including increased mortality rates. VA anticipates the potential consequences of these perturbations and enables infrastructure stakeholders to improve the system's resilience. The current transportation climate VA—which only considers a single direct climate stressor on the infrastructure—falls short of addressing the wildfire and heat challenges. This work proposes advanced transportation climate VA methods to address the complex and multiple climate stressors and the vulnerability of infrastructure users. Two specific regions were chosen to carry out the progressive transportation climate VA: 1) the California transportation networks’ vulnerability to post-fire debris flows, and 2) the transportation infrastructure user’s vulnerability to heat exposure in Phoenix.
ContributorsLi, Rui (Author) / Chester, Mikhail V. (Thesis advisor) / Middel, Ariane (Committee member) / Hondula, David M. (Committee member) / Pendyala, Ram (Committee member) / Arizona State University (Publisher)
Created2022
171628-Thumbnail Image.png
Description
Transitioning into civilian life after military service is a challenging prospect. It can be difficult to find employment and maintain good mental health, and up to 70 percent of veterans experience homelessness or alcoholism. Upon discharge, many veterans pursue higher education as a way to reintegrate into civilian society. However,

Transitioning into civilian life after military service is a challenging prospect. It can be difficult to find employment and maintain good mental health, and up to 70 percent of veterans experience homelessness or alcoholism. Upon discharge, many veterans pursue higher education as a way to reintegrate into civilian society. However, many studies have shown that veterans encounter multiple challenges during their attempt to reintegrate into civilian life, including anxiety, a lack of relevant skills, post-traumatic stress disorder (PTSD), and other issues that may lead to communication and interaction challenges in the higher education environment. Student veterans also face challenges in the lack of common language and culture clashes due to differences between military and college culture. This study used a mixed-methods approach to examine the challenges military veterans face related to language use in civilian life. The data was collected from 149 student veterans who completed a questionnaire and 11 student veterans who participated in interviews. Detailed analysis of collected data showed that student veterans experienced some challenges in language use, especially when they initially enrolled in their courses, but they seemed to have overcome challenges after spending time in the university setting. The veterans who had prior college education before joining the military seemed to have a slight advantage, having had experience using the academic language. The study also explored how student veterans chose to share their veteran status with other people in their university community. The findings showed that they strongly identified with their veteran identity and was comfortable sharing their status with others, but they also sometimes were reluctant to share their military experience in details because they were afraid that their peers would not understand.
ContributorsObaid, Naji (Author) / Matsuda, Aya (Thesis advisor) / Smith, David (Committee member) / James, Mark (Committee member) / Arizona State University (Publisher)
Created2022
Description

Studying the so-called ”hidden” phases of quantum materials—phases that do not exist under equilibrium conditions, but can be accessed with light—reveals new insights into the broader field of structural phase transitions. Using terahertz irradiation as well as hard x-ray probes made available by x-ray free electron lasers (XFELs) provides unique

Studying the so-called ”hidden” phases of quantum materials—phases that do not exist under equilibrium conditions, but can be accessed with light—reveals new insights into the broader field of structural phase transitions. Using terahertz irradiation as well as hard x-ray probes made available by x-ray free electron lasers (XFELs) provides unique capabilities to study phonon dispersion in these materials. Here, we study the cubic peak of the quantum paraelectric strontium titanate (SrTiO3, STO) below the 110 K cubic-to-tetragonal tran- sition. Our results reveal a temperature and field strength dependence of the transverse acoustic mode in agreement with previous work on the avoided crossing occurring at finite wavevector, as well as evidence of anharmonic coupling between transverse optical phonons and a fully symmetric A1g phonon. These results elucidate previous optical studies on STO and hold promise for future studies on the hidden metastable phases of quantum materials.

ContributorsStanton, Jade (Author) / Teitelbaum, Samuel (Thesis director) / Smith, David (Committee member) / Barrett, The Honors College (Contributor) / School of Mathematical and Statistical Sciences (Contributor) / Department of Physics (Contributor)
Created2023-05
168318-Thumbnail Image.png
Description
In this dissertation, the surface interactions of fluorine were studied during atomic layer deposition (ALD) and atomic layer etching (ALE) of wide band gap materials. To enable this research two high vacuum reactors were designed and constructed for thermal and plasma enhanced ALD and ALE, and they were equipped for

In this dissertation, the surface interactions of fluorine were studied during atomic layer deposition (ALD) and atomic layer etching (ALE) of wide band gap materials. To enable this research two high vacuum reactors were designed and constructed for thermal and plasma enhanced ALD and ALE, and they were equipped for in-situ process monitoring. Fluorine surface interactions were first studied in a comparison of thermal and plasma enhanced ALD (TALD and PEALD) of AlF3 thin films prepared using hydrogen fluoride (HF), trimethylaluminum (TMA), and H2-plasma. The ALD AlF3 films were compared ¬in-situ using ellipsometry and X-ray photoelectron spectroscopy (XPS). Ellipsometry showed a growth rate of 1.1 Å/ cycle and 0.7 Å/ cycle, at 100°C, for the TALD and PEALD AlF3 processes, respectively. XPS indicated the presence of Al-rich clusters within the PEALD film. The formation of the Al-rich clusters is thought to originate during the H2-plasma step of the PEALD process. The Al-rich clusters were not detected in the TALD AlF3 films. This study provided valuable insight on the role of fluorine in an ALD process. Reactive ion etching is a common dry chemical etch process for fabricating GaN devices. However, the use of ions can induce various defects, which can degrade device performance. The development of low-damage post etch processes are essential for mitigating plasma induced damage. As such, two multistep ALE methods were implemented for GaN based on oxidation, fluorination, and ligand exchange. First, GaN surfaces were oxidized using either water vapor or O2-plasma exposures to produce a thin oxide layer. The oxide layer was addressed using alternating exposures of HF and TMG, which etch Ga2O3 films. Each ALE process was characterized using in-situ using ellipsometry and XPS and ex-situ transmission electron microscopy (TEM). XPS indicated F and O impurities remained on the etched surfaces. Ellipsometry and TEM showed a slight reduction in thickness. The very low ALE rate was interpreted as the inability of the Ga2O3 ALE process to fluorinate the ordered surface oxide on GaN (0001). Overall, these results indicate HF is effective for the ALD of metal fluorides and the ALE of metal oxides.
ContributorsMessina, Daniel C (Author) / Nemanich, Robert J (Thesis advisor) / Goodnick, Stephen (Committee member) / Ponce, Fernando A (Committee member) / Smith, David (Committee member) / Arizona State University (Publisher)
Created2021
Description

En la zona metropolitana de Phoenix, el calor urbano está afectando la salud, la seguridad y la economía y se espera que estos impactos empeoren con el tiempo. Se prevé que el número de días por encima de 110˚F aumentará más del doble para el 2060. En mayo de 2017,

En la zona metropolitana de Phoenix, el calor urbano está afectando la salud, la seguridad y la economía y se espera que estos impactos empeoren con el tiempo. Se prevé que el número de días por encima de 110˚F aumentará más del doble para el 2060. En mayo de 2017, The Nature Conservancy, el Departamento de Salud Pública del condado de Maricopa, Central Arizona Conservation Alliance, la Red de Investigación en Sostenibilidad sobre la Resiliencia Urbana a Eventos Extremos, el Centro de Investigación del Clima Urbano de Arizona State University y el Center for Whole Communities lanzaron un proceso participativo de planificación de acciones contra el calor para identificar tanto estrategias de mitigación como de adaptación a fin de reducir directamente el calor y mejorar la capacidad de los residentes para lidiar con el calor. Las organizaciones comunitarias con relaciones existentes en tres vecindarios seleccionados para la planificación de acciones contra el calor se unieron más tarde al equipo del proyecto: Phoenix Revitalization Corporation, RAILMesa y Puente Movement. Más allá de construir un plan de acción comunitario contra el calor y completar proyectos de demostración, este proceso participativo fue diseñado para desarrollar conciencia, iniciativa y cohesión social en las comunidades subrepresentadas. Asimismo el proceso de planificación de acciones contra el calor fue diseñado para servir como modelo para esfuerzos futuros de resiliencia al calor y crear una visión local, contextual y culturalmente apropiada de un futuro más seguro y saludable. El método iterativo de planificación y participación utilizado por el equipo del proyecto fortaleció las relaciones dentro y entre los vecindarios, las organizaciones comunitarias, los responsables de la toma de decisiones y el equipo núcleo, y combinó la sabiduría de la narración de historias y la evidencia científica para comprender mejor los desafíos actuales y futuros que enfrentan los residentes durante eventos de calor extremo. Como resultado de tres talleres en cada comunidad, los residentes presentaron ideas que quieren ver implementadas para aumentar su comodidad y seguridad térmica durante los días de calor extremo.

Como se muestra a continuación, las ideas de los residentes se interceptaron en torno a conceptos similares, pero las soluciones específicas variaron entre los vecindarios. Por ejemplo, a todos los vecindarios les gustaría agregar sombra a sus corredores peatonales, pero variaron las preferencias para la ubicación de las mejoras para dar sombra. Algunos vecindarios priorizaron las rutas de transporte público, otros priorizaron las rutas utilizadas por los niños en su camino a la escuela y otros quieren paradas de descanso con sombra en lugares clave. Surgieron cuatro temas estratégicos generales en los tres vecindarios: promover y educar; mejorar la comodidad/capacidad de afrontamiento; mejorar la seguridad; fortalecer la capacidad. Estos temas señalan que existen serios desafíos de seguridad contra el calor en la vida diaria de los residentes y que la comunidad, los negocios y los sectores responsables de la toma de decisión deben abordar esos desafíos.

Los elementos del plan de acción contra el calor están diseñados para incorporarse a otros esfuerzos para aliviar el calor, crear ciudades resilientes al clima y brindar salud y seguridad pública. Los socios de implementación del plan de acción contra el calor provienen de la región de la zona metropolitana de Phoenix, y se brindan recomendaciones para apoyar la transformación a una ciudad más fresca.

Para ampliar la escala de este enfoque, los miembros del equipo del proyecto recomiendan a) compromiso continuo e inversiones en estos vecindarios para implementar el cambio señalado como vital por los residentes, b) repetir el proceso de planificación de acción contra el calor con líderes comunitarios en otros vecindarios, y c) trabajar con las ciudades, los planificadores urbanos y otras partes interesadas para institucionalizar este proceso, apoyando las políticas y el uso de las métricas propuestas para crear comunidades más frescas.

ContributorsMesserschmidt, Maggie (Contributor) / Guardaro, Melissa (Contributor) / White, Jessica R. (Contributor) / Berisha, Vjollca (Contributor) / Hondula, David M. (Contributor) / Feagan, Mathieu (Contributor) / Grimm, Nancy (Contributor) / Beule, Stacie (Contributor) / Perea, Masavi (Contributor) / Ramirez, Maricruz (Contributor) / Olivas, Eva (Contributor) / Bueno, Jessica (Contributor) / Crummey, David (Contributor) / Winkle, Ryan (Contributor) / Rothballer, Kristin (Contributor) / Mocine-McQueen, Julian (Contributor) / Maurer, Maria (Artist) / Coseo, Paul (Artist) / Crank, Peter J (Designer) / Broadbent, Ashley (Designer) / McCauley, Lisa (Designer) / Nature's Cooling Systems Project (Contributor) / Nature Conservancy (U.S.) (Contributor) / Phoenix Revitalization Corporation (Contributor) / Puente Movement (Contributor) / Maricopa County (Ariz.). Department of Public Health (Contributor) / Central Arizona Conservation Alliance (Contributor) / Arizona State University. Urban Climate Research Center (Contributor) / Arizona State University. Urban Resilience to Extremes Sustainability Research Network (Contributor) / Center for Whole Communities (Contributor) / RAILmesa (Contributor) / Vitalyst Health Foundation (Funder)
Created2022
162992-Thumbnail Image.png
Description

According to the Centers for Disease Control and Prevention (CDC), more people die in the U.S. from heat than from all other natural disasters combined. According to the Environmental Protection Agency (EPA), more than 1,300 deaths per year in the United States are due to extreme heat. Arizona, California and

According to the Centers for Disease Control and Prevention (CDC), more people die in the U.S. from heat than from all other natural disasters combined. According to the Environmental Protection Agency (EPA), more than 1,300 deaths per year in the United States are due to extreme heat. Arizona, California and Texas are the three states with the highest burden, accounting for 43% of all heat-related deaths according to the CDC.

Although only 5% of housing in Maricopa County, Arizona, is mobile homes, approximately 30% of indoor heat-related deaths occur in these homes. Thus, the residents of mobile homes in Maricopa County are disproportionately affected by heat. Mobile home residents are extremely exposed to heat due to the high density of mobile home parks, poor construction of dwellings, lack of vegetation, socio-demographic features and not being eligible to get utility and financial assistance.

We researched numerous solutions across different domains that could help build the heat resilience of mobile home residents. As a result we found 50 different solutions for diverse stakeholders, budgets and available resources. The goal of this toolbox is to present these solutions and to explain how to apply them in order to get the most optimal result and build About this Solutions Guide People who live in mobile homes are 6 to 8 times more likely to die of heat-associated deaths. heat resilience for mobile home residents. These solutions were designed as a coordinated set of actions for everyone — individual households, mobile home residents, mobile home park owners, cities and counties, private businesses and nonprofits serving mobile home parks, and other stakeholders — to be able to contribute to heat mitigation for mobile home residents.

When we invest in a collective, coordinated suite of solutions that are designed specifically to address the heat vulnerability of mobile homes residents, we can realize a resilience dividend in maintaining affordable, feasible, liveable housing for the 20 million Americans who choose mobile homes and manufactured housing as their place to live and thrive.

ContributorsVarfalameyeva, Katsiaryna (Author) / Solís, Patricia (Author) / Phillips, Lora A. (Author) / Charley, Elisha (Author) / Hondula, David M. (Author) / Kear, Mark (Author)
Created2021
167589-Thumbnail Image.png
Description

BACKGROUND: The City of Phoenix initiated the HeatReady program in 2018 to prepare for extreme heat, as there was no official tool, framework, or mechanism at the city level to manage extreme heat. The current landscape of heat safety culture in schools, which are critical community hubs, has received less

BACKGROUND: The City of Phoenix initiated the HeatReady program in 2018 to prepare for extreme heat, as there was no official tool, framework, or mechanism at the city level to manage extreme heat. The current landscape of heat safety culture in schools, which are critical community hubs, has received less illumination. HeatReady Schools—a critical component of a HeatReady City—are those that are increasingly able to identify, prepare for, mitigate, track, and respond to the negative impacts of schoolgrounds heat. However, minimal attention has been given to formalize heat preparedness in schools to mitigate high temperatures and health concerns in schoolchildren, a heat-vulnerable population. This study set out to understand heat perceptions, (re)actions, and recommendations of key stakeholders and to identify critical themes around heat readiness. METHODS: An exploratory sequential mixed-methods case study approach was used. These methods focused on acquiring new insight on heat perceptions at elementary schools through semi-structured interviews using thematic analysis and the Delphi panel. Participants included public health professionals and school community members at two elementary schools—one public charter, one public—in South Phoenix, Arizona, a region that has been burdened historically with inequitable distribution of heat resources due to environmental racism and injustices. RESULTS: Findings demonstrated that 1) current heat safety resources are available but not fully utilized within the school sites, 2) expert opinions support that extreme heat readiness plans must account for site-specific needs, particularly education as a first step, and 3) students are negatively impacted by the effects of extreme heat, whether direct or indirect, both inside and outside the classroom. CONCLUSIONS: From key informant interviews and a Delphi panel, a list of 30 final recommendations were developed as important actions to be taken to become “HeatReady.” Future work will apply these recommendations in a HeatReady School Growth Tool that schools can tailor be to their individual needs to improve heat safety and protection measures at schools.

ContributorsShortridge, Adora (Author) / Walker, William VI (Author) / White, Dave (Committee member) / Guardaro, Melissa (Committee member) / Hondula, David M. (Committee member) / Vanos, Jennifer (Committee member) / School of Sustainability (Contributor)
Created2022-04-18
ContributorsForgey, Sydney (Performer) / Hickman, Miriam, 1955- (Performer) / Smith, David (Performer) / ASU Library. Music Library (Publisher)
Created2020-03-25
156665-Thumbnail Image.png
Description
This dissertation research studies long-term spatio-temporal patterns of surface urban heat island (SUHI) intensity, urban evapotranspiration (ET), and urban outdoor water use (OWU) using Phoenix metropolitan area (PMA), Arizona as the case study. This dissertation is composed of three chapters. The first chapter evaluates the SUHI intensity for PMA using

This dissertation research studies long-term spatio-temporal patterns of surface urban heat island (SUHI) intensity, urban evapotranspiration (ET), and urban outdoor water use (OWU) using Phoenix metropolitan area (PMA), Arizona as the case study. This dissertation is composed of three chapters. The first chapter evaluates the SUHI intensity for PMA using Moderate Resolution Imaging Spectroradiometer (MODIS) land surface temperature (LST) product and a time-series trend analysis to discover areas that experienced significant changes of SUHI intensity between 2000 and 2017. The heating and cooling effects of different urban land use land cover (LULC) types was also examined using classified Landsat satellite images. The second chapter is focused on urban ET and the impacts of urban LULC change on ET. An empirical model of urban ET for PMA was built using flux tower data and MODIS land products using multivariate regression analysis. A time-series trend analysis was then performed to discover areas in PMA that experienced significant changes of ET between 2001 and 2015. The impact of urban LULC change on ET was examined using classified LULC maps. The third chapter models urban OWU in PMA using a surface energy balance model named METRIC (Mapping Evapotranspiration at high spatial Resolution with Internalized Calibration) and time-series Landsat Thematic Mapper 5 imagery for 2010. The relationship between urban LULC types and OWU was examined with the use of very high-resolution land cover classification data generated from the National Agriculture Imagery Program (NAIP) imagery and regression analysis. Socio-demographic variables were selected from census data at the census track level and analyzed against OWU to study their relationship using correlation analysis. This dissertation makes significant contributions and expands the knowledge of long-term urban climate dynamics for PMA and the influence of urban expansion and LULC change on regional climate. Research findings and results can be used to provide constructive suggestions to urban planners, decision-makers, and city managers to formulate new policies and regulations when planning new constructions for the purpose of sustainable development for a desert city.
ContributorsWang, Chuyuan (Author) / Myint, Soe W. (Thesis advisor) / Brazel, Anthony J. (Committee member) / Wang, Zhihua (Committee member) / Hondula, David M. (Committee member) / Arizona State University (Publisher)
Created2018
156673-Thumbnail Image.png
Description
A piezoelectric transducer, comprised of electroded and active pad PZT layer atop a backing PZT layer and protected with an acoustic matching layer, and operating under a pulse-echo technique for longitudinal ultrasonic imaging, acts as both source and detector.

Ultrasonic transducer stacks (modules), which had failed or passed during pulse-echo

A piezoelectric transducer, comprised of electroded and active pad PZT layer atop a backing PZT layer and protected with an acoustic matching layer, and operating under a pulse-echo technique for longitudinal ultrasonic imaging, acts as both source and detector.

Ultrasonic transducer stacks (modules), which had failed or passed during pulse-echo sensitivity testing, were received from Consortium X. With limited background information on these stacks, the central theme was to determine the origin(s) of failure via the use of thermal and physicochemical characterization techniques.

The optical and scanning electron microscopy revealed that contact electrode layers are discontinuous in all samples, while delaminations between electrodes and pad layer were observed in failed samples. The X-ray diffraction data on the pad PZT revealed an overall c/a ratio of 1.022 ratio and morphotropic boundary composition, with significant variations of the Zr to Ti ratio within a sample and between samples. Electron probe microanalysis confirmed that the overall Zr to Ti ratio of the pad PZT was 52/48, and higher amounts of excess PbO in failed samples, whereas, inductively coupled plasma mass spectrometry revealed the presence of Mn, Al, and Sb (dopants) and presence of Cu (sintering aid) in in this hard (pad) PZT. Additionally, three exothermic peaks during thermal analysis was indicative of incomplete calcination of pad PZT. Moreover, transmission electron microscopy and scanning transmission electron microscopy revealed the presence of parylene at the Ag-pad PZT interface and within the pores of pad PZT (in failed samples subjected to electric fields). This further dilutes the electrical, mechanical, and electromechanical properties of the pad PZT, which in turn detrimentally influences the pulse echo sensitivity.
ContributorsPeri, Prudhvi Ram (Author) / Dey, Sandwip (Thesis advisor) / Smith, David (Committee member) / Alford, Terry (Committee member) / Arizona State University (Publisher)
Created2018