Matching Items (205)
149615-Thumbnail Image.png
Description
This thesis presents a gas sensor readout IC for amperometric and conductometric electrochemical sensors. The Analog Front-End (AFE) readout circuit enables tracking long term exposure to hazardous gas fumes in diesel and gasoline equipments, which may be correlated to diseases. Thus, the detection and discrimination of gases using microelectronic gas

This thesis presents a gas sensor readout IC for amperometric and conductometric electrochemical sensors. The Analog Front-End (AFE) readout circuit enables tracking long term exposure to hazardous gas fumes in diesel and gasoline equipments, which may be correlated to diseases. Thus, the detection and discrimination of gases using microelectronic gas sensor system is required. This thesis describes the research, development, implementation and test of a small and portable based prototype platform for chemical gas sensors to enable a low-power and low noise gas detection system. The AFE reads out the outputs of eight conductometric sensor array and eight amperometric sensor arrays. The IC consists of a low noise potentiostat, and associated 9bit current-steering DAC for sensor stimulus, followed by the first order nested chopped £U£G ADC. The conductometric sensor uses a current driven approach for extracting conductance of the sensor depending on gas concentration. The amperometric sensor uses a potentiostat to apply constant voltage to the sensors and an I/V converter to measure current out of the sensor. The core area for the AFE is 2.65x0.95 mm2. The proposed system achieves 91 dB SNR at 1.32 mW quiescent power consumption per channel. With digital offset storage and nested chopping, the readout chain achieves 500 fÝV input referred offset.
ContributorsKim, Hyun-Tae (Author) / Bakkaloglu, Bertan (Thesis advisor) / Vermeire, Bert (Committee member) / Spanias, Andreas (Committee member) / Thornton, Trevor (Committee member) / Arizona State University (Publisher)
Created2011
149361-Thumbnail Image.png
Description
Distributed inference has applications in fields as varied as source localization, evaluation of network quality, and remote monitoring of wildlife habitats. In this dissertation, distributed inference algorithms over multiple-access channels are considered. The performance of these algorithms and the effects of wireless communication channels on the performance are studied. In

Distributed inference has applications in fields as varied as source localization, evaluation of network quality, and remote monitoring of wildlife habitats. In this dissertation, distributed inference algorithms over multiple-access channels are considered. The performance of these algorithms and the effects of wireless communication channels on the performance are studied. In a first class of problems, distributed inference over fading Gaussian multiple-access channels with amplify-and-forward is considered. Sensors observe a phenomenon and transmit their observations using the amplify-and-forward scheme to a fusion center (FC). Distributed estimation is considered with a single antenna at the FC, where the performance is evaluated using the asymptotic variance of the estimator. The loss in performance due to varying assumptions on the limited amounts of channel information at the sensors is quantified. With multiple antennas at the FC, a distributed detection problem is also considered, where the error exponent is used to evaluate performance. It is shown that for zero-mean channels between the sensors and the FC when there is no channel information at the sensors, arbitrarily large gains in the error exponent can be obtained with sufficient increase in the number of antennas at the FC. In stark contrast, when there is channel information at the sensors, the gain in error exponent due to having multiple antennas at the FC is shown to be no more than a factor of 8/π for Rayleigh fading channels between the sensors and the FC, independent of the number of antennas at the FC, or correlation among noise samples across sensors. In a second class of problems, sensor observations are transmitted to the FC using constant-modulus phase modulation over Gaussian multiple-access-channels. The phase modulation scheme allows for constant transmit power and estimation of moments other than the mean with a single transmission from the sensors. Estimators are developed for the mean, variance and signal-to-noise ratio (SNR) of the sensor observations. The performance of these estimators is studied for different distributions of the observations. It is proved that the estimator of the mean is asymptotically efficient if and only if the distribution of the sensor observations is Gaussian.
ContributorsBanavar, Mahesh Krishna (Author) / Tepedelenlioğlu, Cihan (Thesis advisor) / Spanias, Andreas (Thesis advisor) / Papandreou-Suppappola, Antonia (Committee member) / Duman, Tolga (Committee member) / Zhang, Junshan (Committee member) / Arizona State University (Publisher)
Created2010
149497-Thumbnail Image.png
Description
ABSTRACT The Orpheus Male Chorus of Phoenix occupies and maintains an historical place in the musical and civic history of the City of Phoenix and the State of Arizona. Organized in November, 1929, the Orpheus Male Chorus of Phoenix (OMC) is the only performing arts organization in Phoenix that can

ABSTRACT The Orpheus Male Chorus of Phoenix occupies and maintains an historical place in the musical and civic history of the City of Phoenix and the State of Arizona. Organized in November, 1929, the Orpheus Male Chorus of Phoenix (OMC) is the only performing arts organization in Phoenix that can claim eighty-one years of continuous performance. The chorus gained popularity locally, nationally, and internationally in its first five decades. The breadth of the chorus's recognition began to decline in the latter part of the 20th century, but the chorus still retains a loyal following of audience members. This study focuses on the first fifty years of the OMC, especially the period from 1946 to 1979, the years the chorus was under the direction of Ralph Hess. Through his leadership the group's popularity and recognition reached a peak, thanks largely to his emphasis on civic responsibility, ties to service organizations, and musical ability and showmanship. No scholarly publications exist regarding this organization. Several boxes of memorabilia housed in the Arizona Historical Society Museum in Tempe, Arizona, serve as the primary source of material for this study. Concert programs supply information about concert repertoire, advertising, and chorus history. Newspaper articles from local and international press offer reviews, announcements, and media perceptions of the chorus. Information illustrating the abundant civic engagement of the OMC appears in proclamations and awards from local, state, national, and international personalities. This objective information helps propel the story forward, as do the personal letters and stories contained within the collection. Because many documents from the latter part of the 1970s are missing, the primary source information becomes more anecdotal and subjective. This study illustrates some of the ways in which the OMC went beyond mere survival to occupy a significant place in the musical life of Phoenix. Engagement in civic and social functions and support for non-profit organizations established the chorus as more than just a musical ensemble. Their pursuit under Hess of "Cultural Citizenship" earned them international recognition as civic leaders and ambassadors of goodwill.
ContributorsButler, Robert C (Author) / Schildkret, David (Thesis advisor) / Holbrook, Amy (Committee member) / Doan, Jerry (Committee member) / Arizona State University (Publisher)
Created2010
Description
ABSTRACT Many musicians, both amateur and professional alike, are continuously seeking to expand and explore their performance literature and repertory. Introducing new works into the standard repertory is an exciting endeavor for any active musician. Establishing connections, commissioning new works, and collaborating on performances can all work

ABSTRACT Many musicians, both amateur and professional alike, are continuously seeking to expand and explore their performance literature and repertory. Introducing new works into the standard repertory is an exciting endeavor for any active musician. Establishing connections, commissioning new works, and collaborating on performances can all work together toward the acceptance and success of a composer's music within an instrument community. For the flute, one such composer is Daniel Dorff (b. 1956). Dorff, a Philadelphia-based composer, has written for symphony orchestra, clarinet, contrabassoon, and others; however, his award-winning works for flute and piccolo are earning him much recognition. He has written works for such illustrious flutists as Mimi Stillman, Walfrid Kujala, and Gary Schocker; his flute works have been recorded by Laurel Zucker, Pamela Youngblood and Lois Bliss Herbine; and his pieces have been performed and premiered at each of the National Flute Association Conventions from 2004 to 2009. Despite this success, little has been written about Dorff's life, compositional style, and contributions to the flute repertory. In order to further promote the flute works of Daniel Dorff, the primary focus of this study is the creation of a compact disc recording of Dorff's most prominent works for flute: April Whirlwind, 9 Walks Down 7th Avenue, both for flute and piano, and Nocturne Caprice for solo flute. In support of this recording, the study also provides biographical information regarding Daniel Dorff, discusses his compositional methods and ideology, and presents background information, description, and performance notes for each piece. Interviews with Daniel Dorff regarding biographical and compositional details serve as the primary source for this document. Suggestions for the performance of the three flute works were gathered through interviews with prominent flutists who have studied and performed Dorff's pieces. Additional performance suggestions for Nocturne Caprice were gathered through a coaching session between the author and the composer. This project is meant to promote the flute works of Daniel Dorff and to help establish their role in the standard flute repertory.
ContributorsRich, Angela Marie (Contributor) / Novak, Gail (Pianist) (Performer) / Buck, Elizabeth Y (Thesis advisor) / Hill, Gary W. (Committee member) / Holbrook, Amy (Committee member) / Schuring, Martin (Committee member) / Arizona State University (Publisher)
Created2010
Description
John La Montaine (b. 1920) has devoted his life to music composition. His major works total 62 opus numbers, including operas, concertos, songs, chamber music, and orchestral works as well as eleven compositions for solo piano. Among his composition teachers were Nadia Boulanger and Howard Hanson, and his first piano

John La Montaine (b. 1920) has devoted his life to music composition. His major works total 62 opus numbers, including operas, concertos, songs, chamber music, and orchestral works as well as eleven compositions for solo piano. Among his composition teachers were Nadia Boulanger and Howard Hanson, and his first piano concerto was awarded the 1959 Pulitzer Prize for Music. He was active also as a concert soloist and collaborative pianist, appearing on prestigious concert series and with first-rank orchestras. Despite his obvious success, La Montaine did not seek publicity. As a result, the majority of his music is not widely known. La Montaine's eleven compositions for solo piano are written in a wide variety of styles, from tonal to serial, with many based on a tonal center, and they range in difficulty from the easiest beginner pieces to challenging concert works. His elementary works include a set of easy canons and many small pieces written for an early piano method. An imaginative set of children's pieces and a small virtuoso étude challenge the intermediate pianist. A diverse range of works for the advanced pianist includes a serious sonata, a lively toccata, several contrapuntal works, lilting dance pieces, and unique smaller pieces. The recording included with this research project is the first to present La Montaine's complete works for solo piano. The composer's own recordings of many of his works are difficult to obtain, and only a few have been recorded commercially. While some of his works remain in publishers' catalogs, those which are out-of-print can be obtained via interlibrary loan. This recording and discussion of La Montaine's solo piano pieces are intended to make his work better known.
ContributorsO'Brien, Andrew Charles (Author) / Hamilton, Robert (Thesis advisor) / Cosand, Walter (Committee member) / Holbrook, Amy (Committee member) / Meyer Thompson, Janice (Committee member) / Arizona State University (Publisher)
Created2010
132715-Thumbnail Image.png
Description
Modern audio datasets and machine learning software tools have given researchers a deep understanding into Music Information Retrieval (MIR) applications. In this paper, we investigate the accuracy and viability of using a machine learning based approach to perform music genre recognition using the Free Music Archive (FMA) dataset. We

Modern audio datasets and machine learning software tools have given researchers a deep understanding into Music Information Retrieval (MIR) applications. In this paper, we investigate the accuracy and viability of using a machine learning based approach to perform music genre recognition using the Free Music Archive (FMA) dataset. We compare the classification accuracy of popular machine learning models, implement various tuning techniques including principal components analysis (PCA), as well as provide an analysis of the effect of feature space noise on classification accuracy.
ContributorsKhondoker, Farib (Co-author) / Wildenstein, Diego (Co-author) / Spanias, Andreas (Thesis director) / Ingalls, Todd (Committee member) / Electrical Engineering Program (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
133887-Thumbnail Image.png
Description
This thesis evaluates the viability of an original design for a cost-effective wheel-mounted dynamometer for road vehicles. The goal is to show whether or not a device that generates torque and horsepower curves by processing accelerometer data collected at the edge of a wheel can yield results that are comparable

This thesis evaluates the viability of an original design for a cost-effective wheel-mounted dynamometer for road vehicles. The goal is to show whether or not a device that generates torque and horsepower curves by processing accelerometer data collected at the edge of a wheel can yield results that are comparable to results obtained using a conventional chassis dynamometer. Torque curves were generated via the experimental method under a variety of circumstances and also obtained professionally by a precision engine testing company. Metrics were created to measure the precision of the experimental device's ability to consistently generate torque curves and also to compare the similarity of these curves to the professionally obtained torque curves. The results revealed that although the test device does not quite provide the same level of precision as the professional chassis dynamometer, it does create torque curves that closely resemble the chassis dynamometer torque curves and exhibit a consistency between trials comparable to the professional results, even on rough road surfaces. The results suggest that the test device provides enough accuracy and precision to satisfy the needs of most consumers interested in measuring their vehicle's engine performance but probably lacks the level of accuracy and precision needed to appeal to professionals.
ContributorsKing, Michael (Author) / Ren, Yi (Thesis director) / Spanias, Andreas (Committee member) / School of Mathematical and Statistical Sciences (Contributor) / Mechanical and Aerospace Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
Description
Video summarization is gaining popularity in the technological culture, where positioning the mouse pointer on top of a video results in a quick overview of what the video is about. The algorithm usually selects frames in a time sequence through systematic sampling. Invariably, there are other applications like video surveillance,

Video summarization is gaining popularity in the technological culture, where positioning the mouse pointer on top of a video results in a quick overview of what the video is about. The algorithm usually selects frames in a time sequence through systematic sampling. Invariably, there are other applications like video surveillance, web-based video surfing and video archival applications which can benefit from efficient and concise video summaries. In this project, we explored several clustering algorithms and how these can be combined and deconstructed to make summarization algorithm more efficient and relevant. We focused on two metrics to summarize: reducing error and redundancy in the summary. To reduce the error online k-means clustering algorithm was used; to reduce redundancy we applied two different methods: volume of convex hulls and the true diversity measure that is usually used in biological disciplines. The algorithm was efficient and computationally cost effective due to its online nature. The diversity maximization (or redundancy reduction) using technique of volume of convex hulls showed better results compared to other conventional methods on 50 different videos. For the true diversity measure, there has not been much work done on the nature of the measure in the context of video summarization. When we applied it, the algorithm stalled due to the true diversity saturating because of the inherent initialization present in the algorithm. We explored the nature of this measure to gain better understanding on how it can help to make summarization more intuitive and give the user a handle to customize the summary.
ContributorsMasroor, Ahnaf (Co-author) / Anirudh, Rushil (Co-author) / Turaga, Pavan (Thesis director) / Spanias, Andreas (Committee member) / School of Mathematical and Statistical Sciences (Contributor) / Electrical Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2017-05
152194-Thumbnail Image.png
Description
Distributed estimation uses many inexpensive sensors to compose an accurate estimate of a given parameter. It is frequently implemented using wireless sensor networks. There have been several studies on optimizing power allocation in wireless sensor networks used for distributed estimation, the vast majority of which assume linear radio-frequency amplifiers. Linear

Distributed estimation uses many inexpensive sensors to compose an accurate estimate of a given parameter. It is frequently implemented using wireless sensor networks. There have been several studies on optimizing power allocation in wireless sensor networks used for distributed estimation, the vast majority of which assume linear radio-frequency amplifiers. Linear amplifiers are inherently inefficient, so in this dissertation nonlinear amplifiers are examined to gain efficiency while operating distributed sensor networks. This research presents a method to boost efficiency by operating the amplifiers in the nonlinear region of operation. Operating amplifiers nonlinearly presents new challenges. First, nonlinear amplifier characteristics change across manufacturing process variation, temperature, operating voltage, and aging. Secondly, the equations conventionally used for estimators and performance expectations in linear amplify-and-forward systems fail. To compensate for the first challenge, predistortion is utilized not to linearize amplifiers but rather to force them to fit a common nonlinear limiting amplifier model close to the inherent amplifier performance. This minimizes the power impact and the training requirements for predistortion. Second, new estimators are required that account for transmitter nonlinearity. This research derives analytically and confirms via simulation new estimators and performance expectation equations for use in nonlinear distributed estimation. An additional complication when operating nonlinear amplifiers in a wireless environment is the influence of varied and potentially unknown channel gains. The impact of these varied gains and both measurement and channel noise sources on estimation performance are analyzed in this paper. Techniques for minimizing the estimate variance are developed. It is shown that optimizing transmitter power allocation to minimize estimate variance for the most-compressed parameter measurement is equivalent to the problem for linear sensors. Finally, a method for operating distributed estimation in a multipath environment is presented that is capable of developing robust estimates for a wide range of Rician K-factors. This dissertation demonstrates that implementing distributed estimation using nonlinear sensors can boost system efficiency and is compatible with existing techniques from the literature for boosting efficiency at the system level via sensor power allocation. Nonlinear transmitters work best when channel gains are known and channel noise and receiver noise levels are low.
ContributorsSantucci, Robert (Author) / Spanias, Andreas (Thesis advisor) / Tepedelenlioðlu, Cihan (Committee member) / Bakkaloglu, Bertan (Committee member) / Tsakalis, Kostas (Committee member) / Arizona State University (Publisher)
Created2013
151815-Thumbnail Image.png
Description
The field of education has been immensely benefited by major breakthroughs in technology. The arrival of computers and the internet made student-teacher interaction from different parts of the world viable, increasing the reach of the educator to hitherto remote corners of the world. The arrival of mobile phones in the

The field of education has been immensely benefited by major breakthroughs in technology. The arrival of computers and the internet made student-teacher interaction from different parts of the world viable, increasing the reach of the educator to hitherto remote corners of the world. The arrival of mobile phones in the recent past has the potential to provide the next paradigm shift in the way education is conducted. It combines the universal reach and powerful visualization capabilities of the computer with intimacy and portability. Engineering education is a field which can exploit the benefits of mobile devices to enhance learning and spread essential technical know-how to different parts of the world. In this thesis, I present AJDSP, an Android application evolved from JDSP, providing an intuitive and a easy to use environment for signal processing education. AJDSP is a graphical programming laboratory for digital signal processing developed for the Android platform. It is designed to provide utility; both as a supplement to traditional classroom learning and as a tool for self-learning. The architecture of AJDSP is based on the Model-View-Controller paradigm optimized for the Android platform. The extensive set of function modules cover a wide range of basic signal processing areas such as convolution, fast Fourier transform, z transform and filter design. The simple and intuitive user interface inspired from iJDSP is designed to facilitate ease of navigation and to provide the user with an intimate learning environment. Rich visualizations necessary to understand mathematically intensive signal processing algorithms have been incorporated into the software. Interactive demonstrations boosting student understanding of concepts like convolution and the relation between different signal domains have also been developed. A set of detailed assessments to evaluate the application has been conducted for graduate and senior-level undergraduate students.
ContributorsRanganath, Suhas (Author) / Spanias, Andreas (Thesis advisor) / Tepedelenlioğlu, Cihan (Committee member) / Tsakalis, Konstantinos (Committee member) / Arizona State University (Publisher)
Created2013