Matching Items (461)
Filtering by

Clear all filters

152912-Thumbnail Image.png
Description
During the downswing all golfers must roll their forearms and twist the club handle in order to square the club face into impact. Anecdotally some instructors say that rapidly twisting the handle and quickly closing the club face is the best technique while others disagree and suggest the opposite.

During the downswing all golfers must roll their forearms and twist the club handle in order to square the club face into impact. Anecdotally some instructors say that rapidly twisting the handle and quickly closing the club face is the best technique while others disagree and suggest the opposite. World class golfers have swings with a range of club handle twist velocities (HTV) from very slow to very fast and either method appears to create a successful swing. The purpose of this research was to discover the relationship between HTV at impact and selected body and club biomechanical characteristics during a driver swing. Three-dimensional motion analysis methods were used to capture the swings of 94 tour professionals. Pearson product-moment correlation was used to determine if a correlation existed between HTV and selected biomechanical characteristics. The total group was also divided into two sub-groups of 32, one group with the fastest HTV (Hi-HTV) and the other with the slowest HTV (Lo-HTV). Single factor ANOVAs were completed for HTV and each selected biomechanical parameter. No significant differences were found between the Hi-HTV and Lo-HTV groups for both clubhead speed and driving accuracy. Lead forearm supination velocity at impact was found to be significantly different between groups with the Hi-HTV group having a higher velocity. Lead wrist extension velocity at impact, while not being significantly different between groups was found to be positive in both groups, meaning that the lead wrist is extending at impact. Lead wrist ulnar deviation, lead wrist release and trail elbow extension velocities at maximum were not significantly different between groups. Pelvis rotation, thorax rotation, pelvis side bend and pelvis rotation at impact were all significantly different between groups, with the Lo-HTV group being more side bent tor the trail side and more open at impact. These results suggest that world class golfers can successfully use either the low or high HTV technique for a successful swing. From an instructional perspective it is important to be aware of the body posture and wrist/forearm motion differences between the two techniques so as to be consistent when teaching either method.
ContributorsCheetham, Phillip (Author) / Hinrichs, Richard (Thesis advisor) / Ringenbach, Shannon (Committee member) / Dounskaia, Natalia (Committee member) / Crews, Debra (Committee member) / Arizona State University (Publisher)
Created2014
152948-Thumbnail Image.png
Description
Skeletal muscle injury may occur from repetitive short bursts of biomechanical strain that impair muscle function. Alternatively, variations of biomechanical strain such as those held for long-duration are used by clinicians to repair muscle and restore its function. Fibroblasts embedded within the unifying connective tissue of skeletal muscle experience these

Skeletal muscle injury may occur from repetitive short bursts of biomechanical strain that impair muscle function. Alternatively, variations of biomechanical strain such as those held for long-duration are used by clinicians to repair muscle and restore its function. Fibroblasts embedded within the unifying connective tissue of skeletal muscle experience these multiple and diverse mechanical stimuli and respond by secreting cytokines. Cytokines direct all stages of muscle regeneration including myoblasts differentiation, fusion to form myotubes, and myotube functionality. To examine how fibroblasts respond to variations in mechanical strain that may affect juxtapose muscle, a myofascial junction was bioengineered that examined the interaction between the two cell types. Fibroblasts were experimentally shown to increase myoblast differentiation, and fibroblast biomechanical strain mediated the extent to which differentiation occurred. Intereleukin-6 is a strain-regulated cytokine secreted by fibroblasts was determined to be necessary for fibroblast-mediated myoblast differentiation. Myotubes differentiated in the presence of strained fibroblasts express greater number of acetylcholine receptors, greater acetylcholine receptor sizes, and modified to be more or less sensitive to acetylcholine-induced contraction. This study provides direct evidence that strained and non-strained fibroblasts can serve as a vehicle to modify myoblast differentiation and myotube functionality. Further understanding the mechanisms regulating these processes may lead to clinical interventions that include strain-activated cellular therapies and bioengineered cell engraftment for mediating the regeneration and function of muscle in vivo.
ContributorsHicks, Michael (Author) / Standley, Paul R (Thesis advisor) / Rawls, Jeffrey (Committee member) / Lake, Douglas (Committee member) / Hinrichs, Richard (Committee member) / Arizona State University (Publisher)
Created2014
151271-Thumbnail Image.png
Description
Humans moving in the environment must frequently change walking speed and direction to negotiate obstacles and maintain balance. Maneuverability and stability requirements account for a significant part of daily life. While constant-average-velocity (CAV) human locomotion in walking and running has been studied extensively unsteady locomotion has received far less attention.

Humans moving in the environment must frequently change walking speed and direction to negotiate obstacles and maintain balance. Maneuverability and stability requirements account for a significant part of daily life. While constant-average-velocity (CAV) human locomotion in walking and running has been studied extensively unsteady locomotion has received far less attention. Although some studies have described the biomechanics and neurophysiology of maneuvers, the underlying mechanisms that humans employ to control unsteady running are still not clear. My dissertation research investigated some of the biomechanical and behavioral strategies used for stable unsteady locomotion. First, I studied the behavioral level control of human sagittal plane running. I tested whether humans could control running using strategies consistent with simple and independent control laws that have been successfully used to control monopod robots. I found that humans use strategies that are consistent with the distributed feedback control strategies used by bouncing robots. Humans changed leg force rather than stance duration to control center of mass (COM) height. Humans adjusted foot placement relative to a "neutral point" to change running speed increment between consecutive flight phases, i.e. a "pogo-stick" rather than a "unicycle" strategy was adopted to change running speed. Body pitch angle was correlated by hip moments if a proportional-derivative relationship with time lags corresponding to pre-programmed reaction (87 ± 19 ms) was assumed. To better understand the mechanisms of performing successful maneuvers, I studied the functions of joints in the lower extremities to control COM speed and height. I found that during stance, the hip functioned as a power generator to change speed. The ankle switched between roles as a damper and torsional spring to contributing both to speed and elevation changes. The knee facilitated both speed and elevation control by absorbing mechanical energy, although its contribution was less than hip or ankle. Finally, I studied human turning in the horizontal plane. I used a morphological perturbation (increased body rotational inertia) to elicit compensational strategies used to control sidestep cutting turns. Humans use changes to initial body angular speed and body pre-rotation to prevent changes in braking forces.
ContributorsQiao, Mu, 1981- (Author) / Jindrich, Devin L (Thesis advisor) / Dounskaia, Natalia (Committee member) / Abbas, James (Committee member) / Hinrichs, Richard (Committee member) / Santello, Marco (Committee member) / Arizona State University (Publisher)
Created2012
133369-Thumbnail Image.png
Description
Breast microcalcifications are a potential indicator of cancerous tumors. Current visualization methods are either uncomfortable or impractical. Impedance measurement studies have been performed, but not in a clinical setting due to a low sensitivity and specificity. We are hoping to overcome this challenge with the development of a highly accurate

Breast microcalcifications are a potential indicator of cancerous tumors. Current visualization methods are either uncomfortable or impractical. Impedance measurement studies have been performed, but not in a clinical setting due to a low sensitivity and specificity. We are hoping to overcome this challenge with the development of a highly accurate impedance probe on a biopsy needle. With this technique, microcalcifications and the surrounding tissue could be differentiated in an efficient and comfortable manner than current techniques for biopsy procedures. We have developed and tested a functioning prototype for a biopsy needle using bioimpedance sensors to detect microcalcifications in the human body. In the final prototype a waveform generator sends a sin wave at a relatively low frequency(<1KHz) into the pre-amplifier, which both stabilizes and amplifies the signal. A modified howland bridge is then used to achieve a steady AC current through the electrodes. The voltage difference across the electrodes is then used to calculate the impedance being experienced between the electrodes. In our testing, the microcalcifications we are looking for have a noticeably higher impedance than the surrounding breast tissue, this spike in impedance is used to signal the presence of the calcifications, which are then sampled for examination by radiology.
ContributorsWen, Robert Bobby (Co-author) / Grula, Adam (Co-author) / Vergara, Marvin (Co-author) / Ramkumar, Shreya (Co-author) / Kozicki, Michael (Thesis director) / Ranjani, Kumaran (Committee member) / School of Molecular Sciences (Contributor) / Electrical Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
133376-Thumbnail Image.png
Description
Breastfeeding has been shown by a number of studies to have numerous benefits on both the mother and the infant. Major health organizations such as the World Health Organization (WHO), now agree that breastfeeding should be encouraged and supported in all countries. But like many things, the wheels of the

Breastfeeding has been shown by a number of studies to have numerous benefits on both the mother and the infant. Major health organizations such as the World Health Organization (WHO), now agree that breastfeeding should be encouraged and supported in all countries. But like many things, the wheels of the law are slow to catch up with scientific evident. Although breastfeeding is supported, working women do not have the option of breastfeeding without consequences. For example, in 2003, Kirstie Marshall, a then member of parliament in Australia was ejected from the lower house chamber on February 23, for breastfeeding her baby [3]. According to standing order 30 at the time, "Unless by order of the House, no Member of this House shall presume to bring any stranger into any part of the House appropriated to the Members of this House while the House, or a Committee of the whole House, is sitting" [3]. The rules did not specify the age of strangers, so the then 11-day-old baby, Charlotte Louise and her mother were shown the exit door of parliament. She had to choose between being present at times of major discussions or leaving the house to breastfeed her child, she chose to leave. More recent statistics show that developed nations like the US and Australia which also have high rates of women employment had low rates of breastfeeding. This might mean that workplace policies do not favor breastfeeding or expressing milk at work. Fortunately, laws have since been introduced in both the United States and Australia that support breastfeeding at the workplace. The next step would be to access how these laws affect breastfeeding statistics and how variation between these two countries like the paid parental leave in Australia (which is not present in all US states) would affect these numbers.
ContributorsSakala, Lydia (Author) / Alison, Alison (Thesis director) / Reddy, Swapna (Committee member) / School of Molecular Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
131532-Thumbnail Image.png
Description
Ketone bodies are produced in the liver from the acetyl CoA derived from fatty acids that cannot enter the Krebs cycle. This is a sub-analysis of a larger study which had numerous outcome markers. This analysis focuses on the relationship between ketone blood levels and cognition. The study looked at

Ketone bodies are produced in the liver from the acetyl CoA derived from fatty acids that cannot enter the Krebs cycle. This is a sub-analysis of a larger study which had numerous outcome markers. This analysis focuses on the relationship between ketone blood levels and cognition. The study looked at the relationship between Time Restricted Feeding (TRF), a method of intermittent fasting. TRF is something that can be easily adapted into an individual’s lifestyle and has been shown to have multiple advantages. This 8-week study began with 23 enrolled participants, but due to COVID-19 only 11 participants could be tested for cognition and blood ketone levels after week 4. All participants had similar ranges of weight, height, age, BMI, hip, and waist measurements at baseline. Moreover, these demographic variables were not related to ketone levels or cognition. The data indicate that ketone bodies increased in participants practicing TRF and that the increase in ketone bodies in the blood, specifically β-hydroxybutyrate was strongly correlated to increased cognitive function. This is consistent with theories that elevated ketone levels allowed for early hunter-gather communities and other mammals to survive prolonged periods of nutrient deprivation while keeping high cognitive function.
ContributorsTaha, Basel Mahmoud (Author) / Johnston, Carol (Thesis director) / Karen, Sweazea (Committee member) / School of Molecular Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
133885-Thumbnail Image.png
Description
The purpose of this thesis experiment was to design and create an Acoustically Active Cannula (AAC), which is furnished by a piezoelectric crystal placed at its tip that produces an acoustic navigation signal. I tested the functionality of the cannula in vitro and demonstrated its navigational abilities in vivo in

The purpose of this thesis experiment was to design and create an Acoustically Active Cannula (AAC), which is furnished by a piezoelectric crystal placed at its tip that produces an acoustic navigation signal. I tested the functionality of the cannula in vitro and demonstrated its navigational abilities in vivo in anesthetized pigs. This experiment was based upon ultrasound science and technology, and thus some practical experience with conventional (B-mode) and Doppler ultrasound was achieved as well. The results of bench and experimental animal studies indicated proper functionality of the AAC for identification and spatial navigation of its tip with color Doppler ultrasound imaging.
ContributorsShamsa, Kayvan (Author) / Tyler, William (Thesis director) / Belohlavek, Marek (Committee member) / School of Molecular Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
133889-Thumbnail Image.png
Description
The academic study of eSports, or professional competition through the medium of video games, has tended to focus on players' motivations to play and watch eSports as well as marketing concerns of huge eSports corporations. Instead of utilizing marketing or psychology to analyze this phenomenon, I investigate three areas of

The academic study of eSports, or professional competition through the medium of video games, has tended to focus on players' motivations to play and watch eSports as well as marketing concerns of huge eSports corporations. Instead of utilizing marketing or psychology to analyze this phenomenon, I investigate three areas of focus in accordance with available literature: the fans and their characteristics, the design of the game itself, and the relationship between fans and the game's developer. This investigation was conducted by first examining existing literature surrounding eSports fans, then collecting public domain data such as Reddit posts, forum posts, and YouTube videos, and last by studying interviews with developers and players. With this thesis, I apply a fan studies approach to eSports by creating a series of indicators based in each of the three focus areas which can be utilized as a systematic method of evaluating an eSport's popularity and growth.
ContributorsHilliker, Noah Henry (Author) / Ingram-Waters, Mary (Thesis director) / Schmidt, Peter (Committee member) / Anderson, Sky (Committee member) / School of Molecular Sciences (Contributor) / W.P. Carey School of Business (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
134159-Thumbnail Image.png
DescriptionThis project is designed to generate enthusiasm for science among refugee students in hopes of inspiring them to continue learning science as well as to help them with their current understanding of their school science subject matter.
ContributorsSipes, Shannon Paige (Author) / O'Flaherty, Katherine (Thesis director) / Gregg, George (Committee member) / School of Molecular Sciences (Contributor) / Division of Teacher Preparation (Contributor) / Barrett, The Honors College (Contributor)
Created2017-12
134174-Thumbnail Image.png
Description
The main goal of this project is to discuss the evolution of women in medicine by focusing on their history and where they are today. Women have gone through a lot of obstacles to be able to work in competitive fields today. They have done tremendously and they have also

The main goal of this project is to discuss the evolution of women in medicine by focusing on their history and where they are today. Women have gone through a lot of obstacles to be able to work in competitive fields today. They have done tremendously and they have also broken several barriers to prove to world that it is possible to be a successful working female in the work field. The focus on Muslim female physicians is placed because many Muslim women are judged by their religion prior to getting to know who they truly are. Many of those Muslim women are very successful physicians who have set the bar high. Throughout this paper one on one interviews with Muslim females in medicine were conducted to show the outside world that Muslim women are just like any other working individual. They all have similar passions and the goal to heal. The mentality of women being the only caretaker and housewife has shifted over the years, in 2017, women are working in very competitive fields such as medicine, engineering, mathematics, science, research and more. This project also included an online survey which indicated how women in the medical field feel towards certain conditions. The results indicated that many women do in fact feel inferior to their male colleagues and they also felt that they had to work harder to prove their abilities. This is because there has always been the idea that no matter what a woman will not be as successful as a man and our history shows that people did believe that. However, on the bright side the interviews and survey conducted revealed that women will not let the discouragement of others put them down, instead they have worked hard and proved that they are fully capable of performing their duties as medical doctors.
ContributorsTohaibeche, Raneem (Author) / Ali, Souad T. (Thesis director) / Mousa, Neimeh (Committee member) / School of Molecular Sciences (Contributor) / School of International Letters and Cultures (Contributor) / Barrett, The Honors College (Contributor)
Created2017-12