Matching Items (1,652)
Filtering by

Clear all filters

151696-Thumbnail Image.png
Description
The temperature of a planet's surface depends on numerous physical factors, including thermal inertia, albedo and the degree of insolation. Mars is a good target for thermal measurements because the low atmospheric pressure combined with the extreme dryness results in a surface dominated by large differences in thermal inertia, minimizing

The temperature of a planet's surface depends on numerous physical factors, including thermal inertia, albedo and the degree of insolation. Mars is a good target for thermal measurements because the low atmospheric pressure combined with the extreme dryness results in a surface dominated by large differences in thermal inertia, minimizing the effect of other physical properties. Since heat is propagated into the surface during the day and re-radiated at night, surface temperatures are affected by sub-surface properties down to several thermal skin depths. Because of this, orbital surface temperature measurements combined with a computational thermal model can be used to determine sub-surface structure. This technique has previously been applied to estimate the thickness and thermal inertia of soil layers on Mars on a regional scale, but the Mars Odyssey Thermal Emission Imaging System "THEMIS" instrument allows much higher-resolution thermal imagery to be obtained. Using archived THEMIS data and the KRC thermal model, a process has been developed for creating high-resolution maps of Martian soil layer thickness and thermal inertia, allowing investigation of the distribution of dust and sand at a scale of 100 m/pixel.
ContributorsHeath, Simon (Author) / Christensen, Philip R. (Philip Russel) (Thesis advisor) / Bel, James (Thesis advisor) / Hervig, Richard (Committee member) / Arizona State University (Publisher)
Created2013
151279-Thumbnail Image.png
Description
The present understanding of the formation and evolution of the earliest bodies in the Solar System is based in large part on geochemical and isotopic evidences contained within meteorites. The differentiated meteorites (meteorites originating from bodies that have experienced partial to complete melting) are particularly useful for deciphering magmatic processes

The present understanding of the formation and evolution of the earliest bodies in the Solar System is based in large part on geochemical and isotopic evidences contained within meteorites. The differentiated meteorites (meteorites originating from bodies that have experienced partial to complete melting) are particularly useful for deciphering magmatic processes occurring in the early Solar System. A rare group of differentiated meteorites, the angrites, are uniquely suited for such work. The angrites have ancient crystallization ages, lack secondary processing, and have been minimally affected by shock metamorphism, thus allowing them to retain their initial geochemical and isotopic characteristics at the time of formation. The scarcity of angrite samples made it difficult to conduct comprehensive investigations into the formation history of this unique meteorite group. However, a dramatic increase in the number of angrites recovered in recent years presents the opportunity to expand our understanding of their petrogenesis, as well as further refine our knowledge of the initial isotopic abundances in the early Solar System as recorded by their isotopic systematics. Using a combination of geochemical tools (radiogenic isotope chronometers and trace element chemistry), I have investigated the petrogenetic history of a group of four angrites that sample a range of formation conditions (cooling histories) and crystallization ages. Through isotope ratio measurements, I have examined a comprehensive set of long- and short-lived radiogenic isotope systems (26Al-26Mg, 87Rb-87Sr, 146Sm-142Nd, 147Sm-143Nd, and 176Lu-176Hf) within these four angrites. The results of these measurements provide information regarding crystallization ages, as well as revised estimates for the initial isotopic abundances of several key elements in the early Solar System. The determination of trace element concentrations in individual mineral phases, as well as bulk rock samples, provides important constraints on magmatic processes occurring on the angrite parent body. The measured trace element abundances are used to estimate the composition of the parent melts of individual angrites, examine crystallization conditions, and investigate possible geochemical affinities between various angrites. The new geochemical and isotopic measurements presented here significantly expand our understanding of the geochemical conditions found on the angrite parent body and the environment in which these meteorites formed.
ContributorsSanborn, Matthew E (Author) / Wadhwa, Meenakshi (Thesis advisor) / Hervig, Richard (Committee member) / Sharp, Thomas (Committee member) / Clarke, Amanda (Committee member) / Williams, Lynda (Committee member) / Carlson, Richard (Committee member) / Arizona State University (Publisher)
Created2012
151290-Thumbnail Image.png
Description
The presence of a number of extinct radionuclides in the early Solar System (SS) is known from geochemical and isotopic studies of meteorites and their components. The half-lives of these isotopes are short relative to the age of the SS, such that they have now decayed to undetectable levels. They

The presence of a number of extinct radionuclides in the early Solar System (SS) is known from geochemical and isotopic studies of meteorites and their components. The half-lives of these isotopes are short relative to the age of the SS, such that they have now decayed to undetectable levels. They can be inferred to exist in the early SS from the presence of their daughter nuclides in meteoritic materials that formed while they were still extant. The extinct radionuclides are particularly useful as fine-scale chronometers for events in the early SS. They can also be used to help constrain the astrophysical setting of the formation of the SS because their short half-lives and unique formation environments yield information about the sources and timing of delivery of material to the protoplanetary disk. Some extinct radionuclides are considered evidence that the Sun interacted with a massive star (supernova) early in its history. The abundance of 60Fe in the early SS is particularly useful for constraining the astrophysical environment of the Sun's formation because, if present in sufficient abundance, its only likely source is injection from a nearby supernova. The initial SS abundance of 60Fe is poorly constrained at the present time, with estimates varying by 1-2 orders of magnitude. I have determined the 60Fe-60Ni isotope systematics of ancient, well-preserved meteorites using high-precision mass spectrometry to better constrain the initial SS abundance of 60Fe. I find identical estimates of the initial 60Fe abundance from both differentiated basaltic meteorites and from components of primitive chondrites formed in the Solar nebula, which suggest a lower 60Fe abundance than other recent estimates. With recent improved meteorite collection efforts there are more rare ungrouped meteorites being found that hold interesting clues to the origin and evolution of early SS objects. I use the 26Al-26Mg extinct radionuclide chronometer to constrain the ages of several recently recovered meteorites that sample previously unknown asteroid lithologies, including the only know felsic meteorite from an asteroid and two other ungrouped basaltic achondrites. These results help broaden our understanding of the timescales involved in igneous differentiation processes in the early SS.
ContributorsSpivak-Birndorf, Lev (Author) / Wadhwa, Meenakshi (Thesis advisor) / Hervig, Richard (Committee member) / Timmes, Francis (Committee member) / Williams, Lynda (Committee member) / Anbar, Ariel (Committee member) / Arizona State University (Publisher)
Created2012
151506-Thumbnail Image.png
Description
Microbially induced calcium carbonate precipitation (MICP) is attracting increasing attention as a sustainable means of soil improvement. While there are several possible MICP mechanisms, microbial denitrification has the potential to become one of the preferred methods for MICP because complete denitrification does not produce toxic byproducts, readily occurs under anoxic

Microbially induced calcium carbonate precipitation (MICP) is attracting increasing attention as a sustainable means of soil improvement. While there are several possible MICP mechanisms, microbial denitrification has the potential to become one of the preferred methods for MICP because complete denitrification does not produce toxic byproducts, readily occurs under anoxic conditions, and potentially has a greater carbonate yield per mole of organic electron donor than other MICP processes. Denitrification may be preferable to ureolytic hydrolysis, the MICP process explored most extensively to date, as the byproduct of denitrification is benign nitrogen gas, while the chemical pathways involved in hydrolytic ureolysis processes produce undesirable and potentially toxic byproducts such as ammonium (NH4+). This thesis focuses on bacterial denitrification and presents preliminary results of bench-scale laboratory experiments on denitrification as a candidate calcium carbonate precipitation mechanism. The bench-scale bioreactor and column tests, conducted using the facultative anaerobic bacterium Pseudomonas denitrificans, show that calcite can be precipitated from calcium-rich pore water using denitrification. Experiments also explore the potential for reducing environmental impacts and lowering costs associated with denitrification by reducing the total dissolved solids in the reactors and columns, optimizing the chemical matrix, and addressing the loss of free calcium in the form of calcium phosphate precipitate from the pore fluid. The potential for using MICP to sequester radionuclides and metal contaminants that are migrating in groundwater is also investigated. In the sequestration process, divalent cations and radionuclides are incorporated into the calcite structure via substitution, forming low-strontium calcium carbonate minerals that resist dissolution at a level similar to that of calcite. Work by others using the bacterium Sporosarcina pasteurii has suggested that in-situ sequestration of radionuclides and metal contaminants can be achieved through MICP via hydrolytic ureolysis. MICP through bacterial denitrification seems particularly promising as a means for sequestering radionuclides and metal contaminants in anoxic environments due to the anaerobic nature of the process and the ubiquity of denitrifying bacteria in the subsurface.
ContributorsHamdan, Nasser (Author) / Kavazanjian, Edward (Thesis advisor) / Rittmann, Bruce E. (Thesis advisor) / Shock, Everett (Committee member) / Arizona State University (Publisher)
Created2013
152644-Thumbnail Image.png
Description
This dissertation is presented in two sections. First, I explore two methods of using stable isotope analysis to trace environmental and biogeochemical processes. Second, I present two related studies investigating student understanding of the biogeochemical concepts that underlie part one. Fe and Hg are each biogeochemically important elements in their

This dissertation is presented in two sections. First, I explore two methods of using stable isotope analysis to trace environmental and biogeochemical processes. Second, I present two related studies investigating student understanding of the biogeochemical concepts that underlie part one. Fe and Hg are each biogeochemically important elements in their own way. Fe is a critical nutrient for phytoplankton, while Hg is detrimental to nearly all forms of life. Fe is often a limiting factor in marine phytoplankton growth. The largest source, by mass, of Fe to the open ocean is windblown mineral dust, but other more soluble sources are more bioavailable. To look for evidence of these non-soil dust sources of Fe to the open ocean, I measured the isotopic composition of aerosol samples collected on Bermuda. I found clear evidence in the fine size fraction of a non-soil dust Fe source, which I conclude is most likely from biomass burning. Widespread adoption of compact fluorescent lamps (CFL) has increased their importance as a source of environmental Hg. Isotope analysis would be a useful tool in quantifying this impact if the isotopic composition of Hg from CFL were known. My measurements show that CFL-Hg is isotopically fractionated, in a unique pattern, during normal operation. This fractionation is large and has a distinctive, mass-independent signature, such that CFL Hg can be uniquely identified from other sources. Misconceptions research in geology has been a very active area of research, but student thinking regarding the related field of biogeochemistry has not yet been studied in detail. From interviews with 40 undergraduates, I identified over 150 specific misconceptions. I also designed a multiple-choice survey (concept inventory) to measure understanding of these same biogeochemistry concepts. I present statistical evidence, based on the Rasch model, for the reliability and validity of this instrument. This instrument will allow teachers and researchers to easily quantify learning outcomes in biogeochemistry and will complement existing concept inventories in geology, chemistry, and biology.
ContributorsMead, Chris (Author) / Anbar, Ariel (Thesis advisor) / Semken, Steven (Committee member) / Shock, Everett (Committee member) / Herckes, Pierre (Committee member) / Hartnett, Hilairy (Committee member) / Arizona State University (Publisher)
Created2014
152162-Thumbnail Image.png
Description
Stable isotopes were measured in the groundwaters of the Salt River Valley basin in central Arizona to explore the utility of stable isotopes for sourcing recharge waters and engineering better well designs. Delta values for the sampled groundwaters range from -7.6‰ to -10‰ in 18O and -60‰ to -91‰ in

Stable isotopes were measured in the groundwaters of the Salt River Valley basin in central Arizona to explore the utility of stable isotopes for sourcing recharge waters and engineering better well designs. Delta values for the sampled groundwaters range from -7.6‰ to -10‰ in 18O and -60‰ to -91‰ in D and display displacements off the global meteoric water line indicative of surficial evaporation during river transport into the area. Groundwater in the basin is all derived from top-down river recharge; there is no evidence of ancient playa waters even in the playa deposits. The Salt and Verde Rivers are the dominant source of groundwater for the East Salt River valley- the Agua Fria River also contributes significantly to the West Salt River Valley. Groundwater isotopic compositions are generally more depleted in 18O and D with depth, indicating past recharge in cooler climates, and vary within subsurface aquifer layers as sampled during well drilling. When isotopic data were evaluated together with geologic and chemical analyses and compared with data from the final well production water it was often possible to identify: 1) which horizons are the primary producers of groundwater flow and how that might change with time, 2) the chemical exchange of cations and anions via water-rock interaction during top-down mixing of recharge water with older waters, 3) how much well production might be lost if arsenic-contributing horizons were sealed off, and 4) the extent to which replacement wells tap different subsurface water sources. In addition to identifying sources of recharge, stable isotopes offer a new and powerful approach for engineering better and more productive water wells.
ContributorsBond, Angela Nicole (Author) / Knauth, Paul (Thesis advisor) / Hartnett, Hilairy (Committee member) / Shock, Everett (Committee member) / Arizona State University (Publisher)
Created2010
153332-Thumbnail Image.png
Description
In enzyme induced carbonate precipitation (EICP), calcium carbonate (CaCO3) precipitation is catalyzed by plant-derived urease enzyme. In EICP, urea hydrolyzes into ammonia and inorganic carbon, altering geochemical conditions in a manner that promotes carbonate mineral precipitation. The calcium source in this process comes from calcium chloride (CaCl2) in

In enzyme induced carbonate precipitation (EICP), calcium carbonate (CaCO3) precipitation is catalyzed by plant-derived urease enzyme. In EICP, urea hydrolyzes into ammonia and inorganic carbon, altering geochemical conditions in a manner that promotes carbonate mineral precipitation. The calcium source in this process comes from calcium chloride (CaCl2) in aqueous solution. Research work conducted for this dissertation has demonstrated that EICP can be employed for a variety of geotechnical purposes, including mass soil stabilization, columnar soil stabilization, and stabilization of erodible surficial soils. The research presented herein also shows that the optimal ratio of urea to CaCl2 at ionic strengths of less than 1 molar is approximately 1.75:1. EICP solutions of very high initial ionic strength (i.e. 6 M) as well as high urea concentrations (> 2 M) resulted in enzyme precipitation (salting-out) which hindered carbonate precipitation. In addition, the production of NH4+ may also result in enzyme precipitation. However, enzyme precipitation appeared to be reversible to some extent. Mass soil stabilization was demonstrated via percolation and mix-and-compact methods using coarse silica sand (Ottawa 20-30) and medium-fine silica sand (F-60) to produce cemented soil specimens whose strength improvement correlated with CaCO3 content, independent of the method employed to prepare the specimen. Columnar stabilization, i.e. creating columns of soil cemented by carbonate precipitation, using Ottawa 20-30, F-60, and native AZ soil was demonstrated at several scales beginning with small columns (102-mm diameter) and culminating in a 1-m3 soil-filled box. Wind tunnel tests demonstrated that surficial soil stabilization equivalent to that provided by thoroughly wetting the soil can be achieved through a topically-applied solution of CaCl2, urea, and the urease enzyme. The topically applied solution was shown to form an erosion-resistant CaCO3 crust on fine sand and silty soils. Cementation of erodible surficial soils was also achieved via EICP by including a biodegradable hydrogel in the stabilization solution. A dilute hydrogel solution extended the time frame over which the precipitation reaction could occur and provided improved spatial control of the EICP solution.
ContributorsHamdan, Nasser M (Author) / Kavazanjian Jr., Edward (Thesis advisor) / Rittmann, Bruce (Thesis advisor) / Shock, Everett (Committee member) / Arizona State University (Publisher)
Created2015
152999-Thumbnail Image.png
Description
The taxonomic and metabolic profile of the microbial community inhabiting a natural system is largely determined by the physical and geochemical properties of the system. However, the influences of parameters beyond temperature, pH and salinity have been poorly analyzed with few studies incorporating the comprehensive suite of physical and geochemical

The taxonomic and metabolic profile of the microbial community inhabiting a natural system is largely determined by the physical and geochemical properties of the system. However, the influences of parameters beyond temperature, pH and salinity have been poorly analyzed with few studies incorporating the comprehensive suite of physical and geochemical measurements required to fully investigate the complex interactions known to exist between biology and the environment. Further, the techniques used to classify the taxonomic and functional composition of a microbial community are fragmented and unwieldy, resulting in unnecessarily complex and often non-consilient results.

This dissertation integrates environmental metagenomes with extensive geochemical metadata for the development and application of multidimensional biogeochemical metrics. Analysis techniques including a Markov cluster-based evolutionary distance between whole communities, oligonucleotide signature-based taxonomic binning and principal component analysis of geochemical parameters allow for the determination of correlations between microbial community dynamics and environmental parameters. Together, these techniques allow for the taxonomic classification and functional analysis of the evolution of hot spring communities. Further, these techniques provide insight into specific geochemistry-biology interactions which enable targeted analyses of community taxonomic and functional diversity. Finally, analysis of synonymous substitution rates among physically separated microbial communities provides insights into microbial dispersion patterns and the roles of environmental geochemistry and community metabolism on DNA transfer among hot spring communities.

The data presented here confirms temperature and pH as the primary factors shaping the evolutionary trajectories of microbial communities. However, the integration of extensive geochemical metadata reveals new links between geochemical parameters and the distribution and functional diversification of communities. Further, an overall geochemical gradient (from multivariate analyses) between natural systems provides one of the most complete predictions of microbial community functional composition and inter-community DNA transfer rates. Finally, the taxonomic classification and clustering techniques developed within this dissertation will facilitate future genomic and metagenomic studies through enhanced community profiling obtainable via Markov clustering, longer oligonucleotide signatures and insight into PCR primer biases.
ContributorsAlsop, Eric Bennie (Author) / Raymond, Jason (Thesis advisor) / Anbar, Ariel (Committee member) / Farmer, Jack (Committee member) / Shock, Everett (Committee member) / Walker, Sarah (Committee member) / Arizona State University (Publisher)
Created2014
153231-Thumbnail Image.png
Description
Much of Mars' surface is mantled by bright dust, which masks the spectral features used to interpret the mineralogy of the underlying bedrock. Despite the wealth of near-infrared (NIR) and thermal infrared data returned from orbiting spacecraft in recent decades, the detailed bedrock composition of approximately half of the martian

Much of Mars' surface is mantled by bright dust, which masks the spectral features used to interpret the mineralogy of the underlying bedrock. Despite the wealth of near-infrared (NIR) and thermal infrared data returned from orbiting spacecraft in recent decades, the detailed bedrock composition of approximately half of the martian surface remains relatively unknown due to dust cover. To address this issue, and to help gain a better understanding of the bedrock mineralogy in dusty regions, data from the Thermal Emission Spectrometer (TES) Dust Cover Index (DCI) and Mars Reconnaissance Orbiter (MRO) Mars Color Imager (MARCI) were used to identify 63 small localized areas within the classical bright dusty regions of Arabia Terra, Elysium Planitia, and Tharsis as potential "windows" through the dust; that is, areas where the dust cover is thin enough to permit infrared remote sensing of the underlying bedrock. The bedrock mineralogy of each candidate "window" was inferred using processed spectra from the Mars Express (MEx) Observatoire pour la Mineralogie, l'Eau, les Glaces et l'Activité (OMEGA) NIR spectrometer and, where possible, TES. 12 areas of interest returned spectra that are consistent with mineral species expected to be present at the regional scale, such as high- and low-calcium pyroxene, olivine, and iron-bearing glass. Distribution maps were created using previously defined index parameters for each species present within an area. High-quality TES spectra, if present within an area of interest, were deconvolved to estimate modal mineralogy and support NIR results. OMEGA data from Arabia Terra and Elysium Planitia are largely similar and indicate the presence of high-calcium pyroxene with significant contributions of glass and olivine, while TES data suggest an intermediate between the established southern highlands and Syrtis Major compositions. Limited data from Tharsis indicate low-calcium pyroxene mixed with lesser amounts of high-calcium pyroxene and perhaps glass. TES data from southern Tharsis correlate well with the previously inferred compositions of the Aonium and Mare Sirenum highlands immediately to the south.
ContributorsLai, Jason Chi-Shun (Author) / Bell, James (Thesis advisor) / Christensen, Philip R. (Philip Russel) (Committee member) / Hervig, Richard (Committee member) / Arizona State University (Publisher)
Created2014
150209-Thumbnail Image.png
Description
Historically, uranium has received intense study of its chemical and isotopic properties for use in the nuclear industry, but has been largely ignored by geoscientists despite properties that make it an intriguing target for geochemists and cosmochemists alike. Uranium was long thought to have an invariant 238U/235U ratio in natural

Historically, uranium has received intense study of its chemical and isotopic properties for use in the nuclear industry, but has been largely ignored by geoscientists despite properties that make it an intriguing target for geochemists and cosmochemists alike. Uranium was long thought to have an invariant 238U/235U ratio in natural samples, making it uninteresting for isotopic work. However, recent advances in mass spectrometry have made it possible to detect slight differences in the 238U/235U ratio, creating many exciting new opportunities for U isotopic research. Using uranium ore samples from diverse depositional settings from around the world, it is shown that the low-temperature redox transition of uranium (U6+ to U4+) causes measurable fractionation of the 238U/235U ratio. Moreover, it is shown experimentally that a coordination change of U can also cause measurable fractionation in the 238U/235U ratio. This improved understanding of the fractionation mechanisms of U allows for the use of the 238U/235U ratio as a paleoredox proxy. The 238U/235U ratios of carbonates deposited spanning the end-Permian extinction horizon provide evidence of pronounced and persistent widespread ocean anoxia at, or immediately preceding, the extinction boundary. Variable 238U/235U ratios correlated with proxies for initial Cm/U in the Solar System's earliest objects demonstrates the existence of 247Cm in the early Solar System. Proof of variable 238U/235U ratios in meteoritic material forces a substantive change in the previously established procedures of Pb-Pb dating, which assumed an invariant 238U/235U ratio. This advancement improves the accuracy of not only the Pb-Pb chronometer that directly utilizes the 238U/235U ratio, but also for short-lived radiometric dating techniques that indirectly use the 238U/235U ratio to calculate ages of Solar System material.
ContributorsBrennecka, Gregory A (Author) / Anbar, Ariel D (Thesis advisor) / Wadhwa, Meenakshi (Thesis advisor) / Herrmann, Achim D (Committee member) / Hervig, Richard (Committee member) / Young, Patrick (Committee member) / Arizona State University (Publisher)
Created2011