Matching Items (25)
133971-Thumbnail Image.png
Description
For the past couple decades, there has been a continuous rise in obesity and Type II Diabetes which has been attributed to the rise in calorically dense diets, especially those heavy in fats. Because of its rising prevalence, accompanied health concerns, and high healthcare costs, detection and therapies for these

For the past couple decades, there has been a continuous rise in obesity and Type II Diabetes which has been attributed to the rise in calorically dense diets, especially those heavy in fats. Because of its rising prevalence, accompanied health concerns, and high healthcare costs, detection and therapies for these metabolic diseases are in high demand. Insulin resistance is a typical hallmark of Type II Diabetes and the metabolic deficiencies in obesity and is the main focus of this project. The primary purpose of this study is (1) detect the presence of two types of insulin resistance (peripheral and hepatic) as a function of age, (2) distinguish if diet impacted the presence of insulin resistance, and (3) determine both the short-term and long-term effects of caloric restriction on metabolic health. The following study longitudinally observed the changes in insulin resistance in high-fat fed and low-fat fed rodents under ad libitum and caloric restriction conditions over the course of 23 weeks. Fasting blood glucose, fasting insulin, body weight, and sensitivity of insulin on tissue were monitored in order to determine peripheral and hepatic insulin resistance. A high fat diet resulted in higher body weights and higher hepatic insulin resistance with no notable effect on peripheral insulin resistance. Caloric restriction was found to alleviate insulin resistance both during caloric restriction and four weeks after caloric restriction ended. Due to sample size, the generalizability of the findings in this study are limited. However, the current study did provide considerable results and can be viewed as a pilot study for a larger-scale study.
ContributorsZuo, Dana (Author) / Trumble, Benjamin (Thesis director) / Herman, Richard (Committee member) / Department of Psychology (Contributor) / School of Molecular Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
133689-Thumbnail Image.png
Description
With the influence of the Western Diet, obesity has become a rising problem in the country today. Western Diet is characterized by the overconsumption of processed food that is low in nutritional values and high in saturated fats. Study showed that every two out of three adults in the United

With the influence of the Western Diet, obesity has become a rising problem in the country today. Western Diet is characterized by the overconsumption of processed food that is low in nutritional values and high in saturated fats. Study showed that every two out of three adults in the United States are either overweight or obese. Being obese increase the risk of many other disease such as diabetes, cardiovascular disease and insulin resistance. Besides being a great health concern, obesity is also cause a great financial burden. Many efforts have been made to understand the defense against obesity and weight loss. The goal of this study was to understand the characterization of food intake and weight gain responses when imposed on a high-fat diet (HFD) using rats. It was predicted that weight gain would be dependent on energy intake and it would have a significant effect on adiposity compared to energy intake. Data showed that energy intake had high significance with adiposity whereas weight gain showed no significance. Also for the rats that were on HFD, the obesity-prone (OP) rats exhibited a great amount of weight gain and energy intake while the obesity-resistance (OR) rats showed a similar weight gain to the controlled group on low-fat diet (LFD) despite being hyperphagic. This suggests that OR is characterized by equal weight gain despite hyperphagia but this alone cannot explain the boy defense against obesity. More research is needed with a larger sample size to understand weight gain responses in order to fight against the epidemic of obesity.
ContributorsMao, Samuel (Author) / Herman, Richard (Thesis director) / Baluch, Page (Committee member) / Lamb, Timothy (Committee member) / WPC Graduate Programs (Contributor) / School of Molecular Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
134903-Thumbnail Image.png
Description
Adaptive thermogenesis is an innate mechanism that assists the body in controlling its core temperature that can be stimulated in two ways: cold and diet. When adaptive thermogenesis is stimulated through diet, the metabolic rate of the body should increase and the metabolic efficiency of the body should decrease. This

Adaptive thermogenesis is an innate mechanism that assists the body in controlling its core temperature that can be stimulated in two ways: cold and diet. When adaptive thermogenesis is stimulated through diet, the metabolic rate of the body should increase and the metabolic efficiency of the body should decrease. This activation should, theoretically, help to control weight gain. A protocol was developed to study four male Sprague-Dawley rats throughout a fourteen week period through the measurement of brown adipose tissue blood flow and brown adipose tissue, back, and abdomen temperatures to determine if diet induced thermogenesis existed and could be activated through norepinephrine. The sedative used to obtain blood flow measurements, ketamine, was discovered to induce a thermal response prior to the norepinephrine injection by mimicking the norepinephrine response in the sympathetic nervous system. This discovery altered the original protocol to exclude an injection of norepinephrine, as this injection would have no further thermal effect. It was found that ketamine sedation excited diet induced thermogenesis in periods of youth, low fat diet, and early high fat diet. The thermogenic capacity was found to be at a peak of 2.1 degrees Celsius during this time period. The data also suggested that the activation of diet induced thermogenesis decreased as the period of high fat diet increased, and by week 4 of the high fat diet, almost all evidence of diet induced thermogenesis was suppressed. This indicated that diet induced thermogenesis is time and diet dependent. Further investigation will need to be made to determine if prolonged high fat diet or age suppress diet induced thermogenesis.
ContributorsJayo, Heather Lynn (Author) / Caplan, Michael (Thesis director) / Herman, Richard (Committee member) / Chemical Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-12
135764-Thumbnail Image.png
Description
The main goal of this project was to study and understand the release of gentamicin from in – situ, self – reactive drug delivery gelling matrix. The motivation behind this was to create a drug delivery mechanism for gentamicin and eliminate the need for re–injecting the drug multiple times into

The main goal of this project was to study and understand the release of gentamicin from in – situ, self – reactive drug delivery gelling matrix. The motivation behind this was to create a drug delivery mechanism for gentamicin and eliminate the need for re–injecting the drug multiple times into the patient. Gentamicin is used to treat various different bacterial infections of the central nervous system, blood, kidneys, gall bladder, bile duct, heart cavity linings, and heart valves. Pentaerythritol–tetrakis
(3 – mercaptoproprionate; QT) was crosslinked with poly(ethylene glycol) diacrylate (PEGDA) having an average molecular weight of 575 with the help of Phosphate Buffer Saline (PBS), with a buffer ionic strength of 0.143M and a pH of 8.9 and 11, for the drug concentrations of 5 mg/mL and 50 mg/mL, respectively. The Michael – type reaction formed the crosslinked self – administering gelling matrix. With the gelling matrix starting to coagulate into a hydrophobic solid in about 5 minutes, the material was injected into Tygon tubing. After complete solidification, the drug – loaded gels were extracted from the tubing and divided into 1 cm cylinders. The cylinders with 5mg/mL and 50mg/mL drug concentration exhibited a sustained and controlled release curve for about 288 hours. This project as well as this drug delivery system can in the future be expanded for use in the delivery of more hydrophobic long – term drugs to the patient.
ContributorsJolly, Nehal (Author) / Vernon, Brent (Thesis director) / Herman, Richard (Committee member) / Harrington Bioengineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
148466-Thumbnail Image.png
Description

As obesity continues to grow across the world, better understanding of the disease, treatments, and outcomes becomes increasingly important. Animal models used to study these aspects of obesity have 3 phases: experimental (EXP), caloric restriction (CR), and weight regain (WR). For this study an ad libitum high-fat diet (HFD) was

As obesity continues to grow across the world, better understanding of the disease, treatments, and outcomes becomes increasingly important. Animal models used to study these aspects of obesity have 3 phases: experimental (EXP), caloric restriction (CR), and weight regain (WR). For this study an ad libitum high-fat diet (HFD) was used to induce hyperphagia and weight gain in Sprague-Dawley rats in the experimental period. Rats then transitioned to a chow (CH) diet and energy intake (EI; kcal/day) was reduced 40-60% during the caloric restriction period. In weight regain, rats were given chow ad libitum. This protocol was run 3 times, once every academic school year (2017-2018, 2018-2019, and 2019-2020). Sample sizes listed in the order of high fat (HF) rats then chow (CH) rats for each year were as follows: 2017-2018 (n=11, n=8), 2018-2019 (n=12, n=8), 2019-2020 (n=14, n=10). Analysis of energy intake was performed on the first week of the experimental phase and the first week of the weight regain phase. <br/><br/>HF EXP rats showed hyperphagic average daily EIs compared to CH EXP rats for all 3 years (p<0.01-0.0001). HF WR rats were similar to CH WR rats in all applicable years in terms of average daily EI. However, both HF WR and CH WR rats were hyperphagic. HFD caused hyperphagia to be highest at the beginning of the first week of EXP and then EI decreased significantly as days went by. However, in WR, hyperphagia (HF WR and CH WR) was flat throughout the week. Obesity prone (OP) rats during EXP had similar EI behavior to obesity resistant (OR) rats during EXP within the same year. During WR though, OP rats had significantly greater average daily EI (p<0.05-0.001) compared to WR OR rats within the same year for 2 out of the 3 years. <br/><br/>These results suggest that HFD induces hyperphagia during weight gain. In weight regain, where HFD is absent, HF rats and CH rats are both hyperphagic. This suggests that WR induces hyperphagia in both rat groups. WR also induces a greater increase in EI for OP rats compared to OR rats. Therefore, hyperphagia seems to be driven by 2 mechanisms (HFD and WR). The profiles of the responses are different however. HFD induces hyperphagia that decreases over the first week and the level of hyperphagia is similar between OP and OR rats. WR induces hyperphagia that remains stable in the first week and is more pronounced in OP rats compared to OR rats.

ContributorsDoan, Ben (Author) / Herman, Richard (Thesis director) / Molenaar, Sydney (Committee member) / School of Molecular Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
187730-Thumbnail Image.png
Description
Elevated triglycerides (TG) are a hallmark of insulin resistance, which is generally caused by lower lipoprotein lipase (LPL) activity in the vasculature. LPL hydrolyzes TGs into free fatty acids in plasma for use and/or storage in tissues (i.e., adipose tissue, skeletal muscle). Plasma apolipoproteins (Apos) C3 and C2 interact with

Elevated triglycerides (TG) are a hallmark of insulin resistance, which is generally caused by lower lipoprotein lipase (LPL) activity in the vasculature. LPL hydrolyzes TGs into free fatty acids in plasma for use and/or storage in tissues (i.e., adipose tissue, skeletal muscle). Plasma apolipoproteins (Apos) C3 and C2 interact with LPL to modulate its function, and by inhibiting or activating LPL, respectively. Therefore, these proteins play key role in plasma lipid metabolism, but their role in regulating LPL activity in human insulin resistant (IR) (i.e., pre-diabetic) state is not known. Thus, the purpose of this research was to evaluate the concentrations of ApoC3 and ApoC2 in plasma along with the endothelial-bound LPL availability and activity in IR humans and in healthy, insulin sensitive (IS)/control humans. Insulin resistance was evaluated from plasma insulin and glucose responses to an oral glucose tolerance test, and by calculating the Matsuda index. Subjects were placed in the following groups: IR subjects, Matsuda index <4.0 (N=7; 4 males, 3 females); IS, Matsuda index >7.0 (N=11, 9 males, 2 females). IR and IS subjects received an intravenous infusion of insulin (1 mU/kg/min and 0.5 mU/kg/min, respectively) for 30 minutes to stimulate LPL activity. Whole-body endothelial-bound LPL was released from the vasculature by intravenous infusion of heparin. Plasma samples were collected 10 minutes after heparin infusion and analyzed for LPL concentration and activity, and ApoC3 and ApoC2 concentrations. Although plasma LPL concentrations were not different between groups (IR = 457 ± 17 ng/ml, IS = 453 ± 27 ng/ml, P = 0.02), plasma LPL activity was higher in the IR subjects (IR = 665 ± 113 nmol/min/ml, IS = 365 ± 59 nmol/min/ml, P = 0.02). IR subjects had higher concentrations of plasma ApoC3 (IR = 3.6 ± 0.5 mg/dl, IS = 2.7 ± 0.2 mg/dl, P=0.03). However, ApoC2 concentration was not different between groups (IR = 0.15 ± 0.03 mg/dl, IS = 0.11 ± 0.01 mg/dl, P = 0.11). These findings suggest that circulating APOC3 and ApoC2 are not key determinants regulating LPL activity during hyperinsulinemia in the vasculature of insulin resistant humans.
ContributorsJohnsson, Kailin Alexis (Author) / Katsanos, Christos (Thesis advisor) / Herman, Richard (Committee member) / De Filippis, Elena (Eleanna) (Committee member) / Arizona State University (Publisher)
Created2023
161205-Thumbnail Image.png
Description

Obesity has reached epidemic proportions all around the world, and it has doubled in prevalence in both adults and children in over 70 countries from 1980 to 2015 (Afshin et al., 2017). Excessive weight gain in this proportion has been shown to negatively affect human cognition, reward neurocircuitry, stress responsiveness,

Obesity has reached epidemic proportions all around the world, and it has doubled in prevalence in both adults and children in over 70 countries from 1980 to 2015 (Afshin et al., 2017). Excessive weight gain in this proportion has been shown to negatively affect human cognition, reward neurocircuitry, stress responsiveness, and quality of life (Morris et al., 2015). Obesity is an example of a complex interaction between the environment (i.e., high-fat diets) and heredity (i.e., polygenic patterns of inheritance). The overconsumption of a high-fat diet (HFD) is an environmental factor that commonly induces weight gain (Hariri & Thibault, 2010). Two dietary-induced phenotypes have been observed in rats as a bimodal distribution of weight gain: obesity-prone (OP) and obesity-resistant (OR). Levin et al. (1997) investigated male and female HFD-fed Sprague-Dawley rats designated as OR when their weight gains were less than the heaviest chow-fed controls, and OP when their weight gains were greater than the heaviest chow-fed controls. OP rats showed greater weight gain, similar energy intake (EI), and similar feed efficiency (FE) compared to OR rats. Pagliassotti et al. (1997) designated male HFD-fed Wistar rats as OP and OR based on upper and lower tertiles of weight gain. OP rats displayed greater weight gain and EI than OR rats. These investigations highlight a predicament regarding rodent research in obesity: independent variables such as rat age, gender, strain, distribution of dietary macronutrients, and fatty acid composition of HFD and chow vary considerably, making it challenging to generalize data. Our experiment utilized outbred male Sprague-Dawley rats (5-6 weeks) administered a chow diet (19% energy from fat; 3.1 kcal/g) and a lard-based HFD (60% energy from fat; 5.24 kcal/g) over eight weeks. Separate rat populations were examined over three consecutive years (2017-2020), and independent obesogenic environmental variables were controlled. We investigated the persistence of weight gain, EI, and FE in HFD-fed rats inclusive of a population of designated OP and OR rats based on tertiles of weight gain. We define persistence as being p > 0.05. We hypothesize that the profiles (periodic data) of the dependent variables (weight gain, EI, FE) will be similar and persistent throughout the three separate years, but the magnitudes (cumulative data) of the dependent variables will differ. Our findings demonstrate that HFD, OP, and OR groups were persistent for periodic and cumulative weight gain, along with FE across the three consecutive independent years. Our findings also demonstrate impersistence for periodic EI in all groups, along with impersistence in cumulative EI for CHOW, OP, and OR groups. Therefore, our results allude to an inconsistent relationship between EI and weight gain, indicating that EI does not completely explain weight gain. Thus, the weakness between EI and weight gain relationship may be attributed to a polygenic pattern of inheritance, possibly signaling a weight setpoint regardless of EI.

ContributorsSayegh, Jonathan (Author) / Garavito, Jorge (Co-author) / Herman, Richard (Thesis director) / Buetow, Kenneth (Committee member) / Khatib, Rawaan (Committee member) / Barrett, The Honors College (Contributor) / School of Life Sciences (Contributor) / School of Human Evolution & Social Change (Contributor)
Created2021-12
161071-Thumbnail Image.png
Description

Obesity has reached epidemic proportions all around the world, and it has doubled in prevalence in both adults and children in over 70 countries from 1980 to 2015 (Afshin et al., 2017). Excessive weight gain in this proportion has been shown to negatively affect human cognition, reward neurocircuitry, stress responsiveness,

Obesity has reached epidemic proportions all around the world, and it has doubled in prevalence in both adults and children in over 70 countries from 1980 to 2015 (Afshin et al., 2017). Excessive weight gain in this proportion has been shown to negatively affect human cognition, reward neurocircuitry, stress responsiveness, and quality of life (Morris et al., 2015). Obesity is an example of a complex interaction between the environment (i.e., high fat diets) and heredity (i.e., polygenic patterns of inheritance). The overconsumption of a high-fat diet (HFD) is an environmental factor that commonly induces weight gain (Hariri & Thibault, 2010). Two dietary-induced phenotypes have been observed in rats as a bimodal distribution of weight gain: obesity-prone (OP) and obesity-resistant (OR). Levin et al. (1997) investigated male and female HFD-fed Sprague-Dawley rats designated as OR when their weight gains were less than the heaviest chow-fed controls, and OP when their weight gains were greater than the heaviest chow-fed controls. OP rats showed greater weight gain, similar energy intake (EI), and similar feed efficiency (FE) compared to OR rats. Pagliassotti et al. (1997) designated male HFD-fed Wistar rats as OP and OR based on upper and lower tertiles of weight gain. OP rats displayed greater weight gain and EI than OR rats. These investigations highlight a predicament regarding rodent research in obesity: independent variables such as rat age, gender, strain, distribution of dietary macronutrients, and fatty acid composition of HFD and chow vary considerably, making it challenging to generalize data. Our experiment utilized outbred male Sprague-Dawley rats (5-6 weeks) administered a chow diet (19% energy from fat; 3.1 kcal/g) and a lard-based HFD (60% energy from fat; 5.24 kcal/g) over eight weeks. Separate rat populations were examined over three consecutive years (2017-2020), and independent obesogenic environmental variables were controlled. We investigated the persistence of weight gain, EI, and FE in HFD-fed rats inclusive of a population of designated OP and OR rats based on tertiles of weight gain. We define persistence as being p > 0.05. We hypothesize that the profiles (periodic data) of the dependent variables (weight gain, EI, FE) will be similar and persistent throughout the three separate years, but the magnitudes (cumulative data) of the dependent variables will differ. Our findings demonstrate that HFD, OP, and OR groups were persistent for periodic and cumulative weight gain, along with FE across the three consecutive independent years. Our findings also demonstrate impersistence for periodic EI in all groups, along with impersistence in cumulative EI for CHOW, OP, and OR groups. Therefore, our results allude to an inconsistent relationship between EI and weight gain, indicating that EI does not completely explain weight gain. Thus, the weakness between EI and weight gain relationship may be attributed to a polygenic pattern of inheritance, possibly signaling a weight setpoint regardless of EI.

ContributorsGaravito, Jorge (Author) / Sayegh, Jonathan (Co-author) / Herman, Richard (Thesis director) / Buetow, Kenneth (Committee member) / Khatib, Rawaan (Committee member) / Barrett, The Honors College (Contributor) / School of Human Evolution & Social Change (Contributor) / School of Life Sciences (Contributor)
Created2021-12
131435-Thumbnail Image.png
Description
Preliminary studies indicate that the use of dietary menthol may prevent excessive weight gain through the activation of the transient receptor potential melastatin family member 8 (TRPM8) ion channel. It has also been expressed that elevation of the core temperature (Tc) inducing mild hyperthermia via an increase in ambient temperature

Preliminary studies indicate that the use of dietary menthol may prevent excessive weight gain through the activation of the transient receptor potential melastatin family member 8 (TRPM8) ion channel. It has also been expressed that elevation of the core temperature (Tc) inducing mild hyperthermia via an increase in ambient temperature aids in a marked reduction of the drive to eat and weight gain. While caloric restriction (CR) aims to treat obesity and secondary sicknesses, weight regain is a common result during long term weight maintenance. The goal of these studies was to evaluate and identify if the menthol and mild hyperthermia mechanisms could couple synergistically to reduce or abrogate weight gain. Ambient temperature (Ta) was increased incrementally to identify the threshold in which rodents display mild hyperthermia. Our initial attempts at hyperthermia induction failed because of limitations in the environmental chamber. These trials fail to note a threshold at which elevated Tc is sustained for any period of time. The data suggests an ambient temperature of 36-38 °C would be appropriate to induce a mild hyperthermia. A mild hyperthermia is described as the elevation of Tc 2-3 ° above the hypothalamic set point. To facilitate future hyperthermia studies, an environmental chamber was designed. A wine cooler was converted to withstand the desired temperatures, through the use of heat tape, a proportional controller, and a translucent Plexiglas custom fit door. Beyond leveraging temperature to regulate weight gain, dietary changes including a comparison between standard chow food, high fat diet, and menthol supplemented chow food treatment illustrate a strong likelihood of weight gain variability. In this pilot study, weight gain expression when given a diet supplemented with menthol (1%) showed no statistical significance relative to a high fat diet nor chow food, however, it revealed a trend of reduced weight gain. It is assumed the combination of supplemental menthol and mild hyperthermia induction will exacerbate their effects.
ContributorsJohnsson, Kailin Alexis (Author) / Van Horn, Wade (Thesis director) / Herman, Richard (Committee member) / Towe, Bruce (Committee member) / Sanford School of Social and Family Dynamics (Contributor) / School of Life Sciences (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
132585-Thumbnail Image.png
Description
In post-industrialized societies, increased consumption of fat-rich diets has been correlated to increasing rates of metabolic disorders, such as Type II Diabetes, which is further linked to insulin resistance. Due to this modern epidemic, it has become exceedingly important to learn more about these disorders with the ultimate goal of

In post-industrialized societies, increased consumption of fat-rich diets has been correlated to increasing rates of metabolic disorders, such as Type II Diabetes, which is further linked to insulin resistance. Due to this modern epidemic, it has become exceedingly important to learn more about these disorders with the ultimate goal of developing more effective treatments. With an overall focus on insulin resistance, the main purposes of this study were to (1) differentiate between two types of insulin resistance and their corresponding measurements and to (2) demonstrate metabolic changes that occur in response to overconsumption of a calorically dense diet. This was accomplished over a 23-week timespan by applying statistical analysis to periodically measured fasting insulin and blood glucose levels in rats fed either a high fat diet or low fat (chow) diet. Body weights were also recorded. The results of this study showed that rats fed a high fat diet experienced fasting hyperinsulinemia, hyperglycemia, and insulin resistance compared to rats fed a chow diet, and that the homeostatic model assessment (HOMA) scale and insulin-stimulated glucose disposal (ISGD) measure different types of insulin resistance. This study was unique in the fact that hepatic insulin resistance and peripheral insulin resistance were differentiated in the same rat.
ContributorsHenry, Lauren Elizabeth (Author) / Herman, Richard (Thesis director) / Baluch, Debra (Committee member) / School of Life Sciences (Contributor) / School of Music (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05