Matching Items (12)
171998-Thumbnail Image.png
Description
For patients with focal drug-resistant epilepsy, surgical remediation can be a hopeful last resort treatment option, but only if enough clinical signs can point to an epileptogenic tissue region. Subdural grids offer ample cortical surface area coverage to evaluate multiple regions of interest, yet they lack the spatial resolution typical

For patients with focal drug-resistant epilepsy, surgical remediation can be a hopeful last resort treatment option, but only if enough clinical signs can point to an epileptogenic tissue region. Subdural grids offer ample cortical surface area coverage to evaluate multiple regions of interest, yet they lack the spatial resolution typical of penetrating electrodes. Additionally, subthreshold stimulation through subdural grids is a stable source for detecting eloquent cortex surrounding potential epileptic tissue. Researchers have each tried introducing microelectrodes to increase the spatial resolution but ran into connectivity challenges as the desired surface area increased. Meanwhile, clinical hybrid options have shown promise by combining multiple electrode sizes, maintaining surface area coverage with an increased spatial resolution where necessary. However, a benchtop method to quantify spatial resolution or test signal summation, without the complexity of an in vivo study, has not been found in the literature; a subdural grid in gel solution has functioned previously but without a published method. Thus, a novel hybrid electrode array with a telescopic configuration including three electrode geometries, called the M$^3$ array, is proposed to maintain cortical surface area coverage and provide spatial clarity in regions of interest using precision microfabrication techniques. Electrophysiological recording with this array should enhance the clinical signal portfolio without changing how clinicians interface with the broad surface data from macros. Additionally, this would provide a source for simultaneous recording and stimulation from the same location due to the telescopic nature of the design. A novel benchtop test method should remove complexity from in vivo tests while allowing direct comparison of recording capabilities of different cortical surface electrodes. Implementing the proposed M$^3$ electrode array in intracranial monitoring improves the current technology without much compromise, enhancing patient outcomes, reducing risks, and encouraging swift clinical translation.
ContributorsGarich, Jonathan Von (Author) / Blain Christen, Jennifer M (Thesis advisor) / Abbas, James J (Committee member) / Helms Tillery, Stephen I (Committee member) / Muthuswamy, Jitendran (Committee member) / Raupp, Gregory B (Committee member) / Arizona State University (Publisher)
Created2022
151390-Thumbnail Image.png
Description
Our ability to estimate the position of our body parts in space, a fundamentally proprioceptive process, is crucial for interacting with the environment and movement control. For proprioception to support these actions, the Central Nervous System has to rely on a stored internal representation of the body parts in space.

Our ability to estimate the position of our body parts in space, a fundamentally proprioceptive process, is crucial for interacting with the environment and movement control. For proprioception to support these actions, the Central Nervous System has to rely on a stored internal representation of the body parts in space. However, relatively little is known about this internal representation of arm position. To this end, I developed a method to map proprioceptive estimates of hand location across a 2-d workspace. In this task, I moved each subject's hand to a target location while the subject's eyes were closed. After returning the hand, subjects opened their eyes to verbally report the location of where their fingertip had been. Then, I reconstructed and analyzed the spatial structure of the pattern of estimation errors. In the first couple of experiments I probed the structure and stability of the pattern of errors by manipulating the hand used and tactile feedback provided when the hand was at each target location. I found that the resulting pattern of errors was systematically stable across conditions for each subject, subject-specific, and not uniform across the workspace. These findings suggest that the observed structure of pattern of errors has been constructed through experience, which has resulted in a systematically stable internal representation of arm location. Moreover, this representation is continuously being calibrated across the workspace. In the next two experiments, I aimed to probe the calibration of this structure. To this end, I used two different perturbation paradigms: 1) a virtual reality visuomotor adaptation to induce a local perturbation, 2) and a standard prism adaptation paradigm to induce a global perturbation. I found that the magnitude of the errors significantly increased to a similar extent after each perturbation. This small effect indicates that proprioception is recalibrated to a similar extent regardless of how the perturbation is introduced, suggesting that sensory and motor changes may be two independent processes arising from the perturbation. Moreover, I propose that the internal representation of arm location might be constructed with a global solution and not capable of local changes.
ContributorsRincon Gonzalez, Liliana (Author) / Helms Tillery, Stephen I (Thesis advisor) / Buneo, Christopher A (Thesis advisor) / Santello, Marco (Committee member) / Santos, Veronica (Committee member) / Kleim, Jeffrey (Committee member) / Arizona State University (Publisher)
Created2012