Matching Items (133)
156144-Thumbnail Image.png
Description
This dissertation will investigate two of the most promising high-capacity anode

materials for lithium-based batteries: silicon (Si) and metal lithium (Li). It will focus on

studying the mechanical behaviors of the two materials during charge and discharge and

understanding how these mechanical behaviors may affect their electrochemical

performance.

In

This dissertation will investigate two of the most promising high-capacity anode

materials for lithium-based batteries: silicon (Si) and metal lithium (Li). It will focus on

studying the mechanical behaviors of the two materials during charge and discharge and

understanding how these mechanical behaviors may affect their electrochemical

performance.

In the first part, amorphous Si anode will be studied. Despite many existing studies

on silicon (Si) anodes for lithium ion batteries (LIBs), many essential questions still exist

on compound formation, composition, and properties. Here it is shown that some

previously accepted findings do not truthfully reflect the actual lithiation mechanisms in

realistic battery configurations. Furthermore the correlation between structure and

mechanical properties in these materials has not been properly established. Here, a rigorous

and thorough study is performed to comprehensively understand the electrochemical

reaction mechanisms of amorphous-Si (a-Si) in a realistic LIB configuration. In-depth

microstructural characterization was performed and correlations were established between

Li-Si composition, volumetric expansion, and modulus/hardness. It is found that the

lithiation process of a-Si in a real battery setup is a single-phase reaction rather than the

accepted two-phase reaction obtained from in-situ TEM experiments. The findings in this

dissertation establish a reference to quantitatively explain many key metrics for lithiated a

Si as anodes in real LIBs, and can be used to rationally design a-Si based high-performance

LIBs guided by high-fidelity modeling and simulations.

In the second part, Li metal anode will be investigated. Problems related to dendrite

growth on lithium metal anodes such as capacity loss and short circuit present major

barriers to the next-generation high-energy-density batteries. The development of

successful mitigation strategies is impeded by the incomplete understanding of the Li

dendrite growth mechanisms. Here the enabling role of plating residual stress in dendrite

initiation through novel experiments of Li electrodeposition on soft substrates is confirmed,

and the observations is explained with a stress-driven dendrite growth model. Dendrite

growth is mitigated on such soft substrates through surface-wrinkling-induced stress

relaxation in deposited Li film. It is demonstrated that this new dendrite mitigation

mechanism can be utilized synergistically with other existing approaches in the form of

three-dimensional (3D) soft scaffolds for Li plating, which achieves superior coulombic

efficiency over conventional hard copper current collectors under large current density.
ContributorsWang, Xu (Author) / Jiang, Hanqing (Thesis advisor) / Yu, Hongbin (Thesis advisor) / Chan, Candace (Committee member) / Wang, Liping (Committee member) / Qiong, Nian (Committee member) / Arizona State University (Publisher)
Created2018
155599-Thumbnail Image.png
Description
Advancements in thermal interface materials (TIMs) allows for the creation of new and more powerful electronics as they increase the heat transfer from the component to the heat sink. Current industrial options provide decent heat transfer, but the creation of TIMs with higher thermal conductivities is needed. In addition, if

Advancements in thermal interface materials (TIMs) allows for the creation of new and more powerful electronics as they increase the heat transfer from the component to the heat sink. Current industrial options provide decent heat transfer, but the creation of TIMs with higher thermal conductivities is needed. In addition, if these TIMs are elastic in nature, their effectiveness can greatly increase as they can deal with changing interfaces without degradation of their properties. The research performed delves into this idea, creating elastic TIMs using liquid metal (LM), in this case galinstan, along with other matrix particles embedded in Polydimethylsiloxane (PDMS) to create an easy to use, relatively inexpensive, thermally conductive, but electrically insulative, pad with increased thermal conductivity from industrial solutions.

The pads were created using varying amounts of LM and matrix materials ranging from copper microspheres to diamond powder mixed into PDMS using a high-speed mixer. The material was then cast into molds and cured to create the pads. Once the pads were created, the difficulty came in quantifying their thermal properties. A stepped bar apparatus (SBA) following ASTM D5470 was created to measure the thermal resistance of the pads but it was determined that thermal conductivity was a more usable metric of the pads’ performance. This meant that the pad’s in-situ thickness was needed during testing, prompting the installation of a linear encoder to measure the thickness. The design and analysis of the necessary modification and proposed future design is further detailed in the following paper.
ContributorsKemme, Nicholas (Author) / Rykaczewski, Konrad (Thesis advisor) / Wang, Robert (Thesis advisor) / Wang, Liping (Committee member) / Arizona State University (Publisher)
Created2017
128799-Thumbnail Image.png
Description

Background: Urbanization can strongly impact the physiology, behavior, and fitness of animals. Conditions in cities may also promote the transmission and success of animal parasites and pathogens. However, to date, no studies have examined variation in the prevalence or severity of several distinct pathogens/parasites along a gradient of urbanization in animals

Background: Urbanization can strongly impact the physiology, behavior, and fitness of animals. Conditions in cities may also promote the transmission and success of animal parasites and pathogens. However, to date, no studies have examined variation in the prevalence or severity of several distinct pathogens/parasites along a gradient of urbanization in animals or if these infections increase physiological stress in urban populations.

Methodology/Principal Findings: Here, we measured the prevalence and severity of infection with intestinal coccidians (Isospora sp.) and the canarypox virus (Avipoxvirus) along an urban-to-rural gradient in wild male house finches (Haemorhous mexicanus). In addition, we quantified an important stress indicator in animals (oxidative stress) and several axes of urbanization, including human population density and land-use patterns within a 1 km radius of each trapping site. Prevalence of poxvirus infection and severity of coccidial infection were significantly associated with the degree of urbanization, with an increase of infection in more urban areas. The degrees of infection by the two parasites were not correlated along the urban-rural gradient. Finally, levels of oxidative damage in plasma were not associated with infection or with urbanization metrics.

Conclusion/Significance: These results indicate that the physical presence of humans in cities and the associated altered urban landscape characteristics are associated with increased infections with both a virus and a gastrointestinal parasite in this common songbird resident of North American cities. Though we failed to find elevations in urban- or parasite/pathogen-mediated oxidative stress, humans may facilitate infections in these birds via bird feeders (i.e. horizontal disease transmission due to unsanitary surfaces and/or elevations in host population densities) and/or via elevations in other forms of physiological stress (e.g. corticosterone, nutritional).

ContributorsGiraudeau, Mathieu (Author) / Mousel, Melanie (Author) / Earl, Stevan (Author) / McGraw, Kevin (Author) / College of Liberal Arts and Sciences (Contributor)
Created2014-02-04