Matching Items (431)
Filtering by

Clear all filters

Description
The purpose of this project is to introduce Bryan Johanson's composition for two guitars, 13 Ways of Looking at 12 Strings, and present an authoritative recording appropriate for publishing. This fifty-minute piece represents a fascinating suite in thirteen movements. The author of this project performed both guitar parts, recorded them

The purpose of this project is to introduce Bryan Johanson's composition for two guitars, 13 Ways of Looking at 12 Strings, and present an authoritative recording appropriate for publishing. This fifty-minute piece represents a fascinating suite in thirteen movements. The author of this project performed both guitar parts, recorded them separately in a music studio, then mixed them together into one recording. This document focuses on the critical investigation and description of the piece with a brief theoretical analysis, a discussion of performance difficulties, and guitar preparation. The composer approved the use and the scope of this project. Bryan Johanson is one of the leading contemporary composers for the guitar today. 13 Ways of Looking at 12 Strings is a unique guitar dictionary that takes us from Bach to Hendrix and highlights the unique capabilities of the instrument. It utilizes encoded messages, glass slides, metal mutes, explosive "riffs," rhythmic propulsion, improvisation, percussion, fugual writing, and much more. It has a great potential to make the classical guitar attractive to wider audiences, not limited only to guitarists and musicians. The main resources employed in researching this document are existing recordings of Johanson's other compositions and documentation of his personal views and ideas. This written document uses the composer's prolific and eclectic compositional output in order to draw conclusions and trace motifs. This project is a significant and original contribution in expanding the guitar's repertoire, and it uniquely contributes to bringing forth a significant piece of music.
ContributorsSavic, Nenad (Author) / Koonce, Frank (Thesis advisor) / Rotaru, Catalin (Committee member) / McLin, Katherine (Committee member) / Feisst, Sabine (Committee member) / Landschoot, Thomas (Committee member) / Arizona State University (Publisher)
Created2011
Description
The focus of this study was the first Serbian opera, Na Uranku (At Dawn). It was written by Stanislav Binièki (1872-1942) and was first performed in 1903 at the National Theatre in Belgrade. There were two objectives of this project: (1) a live concert performance of the opera, which produced

The focus of this study was the first Serbian opera, Na Uranku (At Dawn). It was written by Stanislav Binièki (1872-1942) and was first performed in 1903 at the National Theatre in Belgrade. There were two objectives of this project: (1) a live concert performance of the opera, which produced an audio recording that can be found as an appendix; and, (2) an accompanying document containing a history and an analysis of the work. While Binièki's opera is recognized as an extraordinary artistic achievement, and a new genre of musical enrichment for Serbian music, little had been previously written either about the composer or the work. At Dawn is a romantic opera in the verismo tradition with national elements. The significance of this opera is not only in its artistic expression but also in how it helped the music of Serbia evolve. Early opera settings in Serbia in the mid-nineteenth to early twentieth century did not have the same wealth of history upon which to draw as had existed in the rich operatic oeuvre in Western Europe and Russia. Similarly, conditions for performance were not satisfactory, as were no professional orchestras or singers. Furthermore, audiences were not accustomed to this type of art form. The opera served as an educational instrument for the audience, not only training them to a different type of music but also evolving its national consciousness. Binièki's opera was a foundation on which later generations of composers built. The artistic value of this opera is emphasized. The musical language includes an assimilation of various influences from Western Europe and Russia, properly incorporated into the Serbian musical core. Audience reaction is discussed, a positive affirmation that Binièki was moving in the right direction in establishing a path for the further development of the artistic field of Serbian musical culture. A synopsis of the work as well as the requisite performing forces is also included.
ContributorsMinov, Jana (Author) / Russell, Timothy (Thesis advisor) / Levy, Benjamin (Committee member) / Schildkret, David (Committee member) / Rogers, Rodney (Committee member) / Reber, William (Committee member) / Arizona State University (Publisher)
Created2011
Description
Delirium is a piece for large wind ensemble that synthesizes compositional techniques to generate unique juxtapositions of contrasting musical elements. The piece is about 8:30 long and uses the full complement of winds, brass, and percussion. Although the composition begins tonally, chromatic alterations gradually shift the melodic content outside of

Delirium is a piece for large wind ensemble that synthesizes compositional techniques to generate unique juxtapositions of contrasting musical elements. The piece is about 8:30 long and uses the full complement of winds, brass, and percussion. Although the composition begins tonally, chromatic alterations gradually shift the melodic content outside of the tonal center. In addition to changes in the melody, octatonic, chromatic, and synthetic scales and quartal and quintal harmonies are progressively introduced throughout the piece to add color and create dissonance. Delirium contains four primary sections that are all related by chromatic mediant. The subdivisions of the first part create abrupt transitions between contrasting material, evocative of the symptoms of delirium. As each sub-section progresses, the A minor tonality of the opening gradually gives way to increased chromaticism and dissonance. The next area transitions to C minor and begins to feature octatonic scales, secundal harmonies, and chromatic flourishes more prominently. The full sound of the ensemble then drops to solo instruments in the third section, now in G# minor, where the elements of the previous section are built upon with the addition of synthetic scales and quartal harmonies. The last division, before the recapitulation of the opening material, provides a drastic change in atmosphere as the chromatic elements from before are removed and the tense sound of the quartal harmonies are replaced with quintal sonorities and a more tonal melody. The tonality of this final section is used to return to the opening material. After an incomplete recapitulation, the descending motive that is used throughout the piece, which can be found in measure 61 in the flutes, is inverted and layered by minor 3rds. This inverted figure builds to the same sonority found in measure138, before ending on an F# chord, a minor third away from the A minor tonal center of the opening and where the piece seems like it should end.
ContributorsBell, Jeremy, 1986- (Composer) / Rogers, Rodney (Thesis advisor) / Oldani, Robert (Committee member) / Levy, Benjamin (Committee member) / Arizona State University (Publisher)
Created2011
150358-Thumbnail Image.png
Description
During the twentieth-century, the dual influence of nationalism and modernism in the eclectic music from Latin America promoted an idiosyncratic style which naturally combined traditional themes, popular genres and secular music. The saxophone, commonly used as a popular instrument, started to develop a prominent role in Latin American classical music

During the twentieth-century, the dual influence of nationalism and modernism in the eclectic music from Latin America promoted an idiosyncratic style which naturally combined traditional themes, popular genres and secular music. The saxophone, commonly used as a popular instrument, started to develop a prominent role in Latin American classical music beginning in 1970. The lack of exposure and distribution of the Latin American repertoire has created a general perception that composers are not interested in the instrument, and that Latin American repertoire for classical saxophone is minimal. However, there are more than 1100 works originally written for saxophone in the region, and the amount continues to grow. This Modern Latin American Repertoire for Classical Saxophone: Recording Project and Performance Guide document establishes and exhibits seven works by seven representative Latin American composers.The recording includes works by Carlos Gonzalo Guzman (Colombia), Ricardo Tacuchian (Brazil), Roque Cordero (Panama), Luis Naón (Argentina), Andrés Alén-Rodriguez (Cuba), Alejandro César Morales (Mexico) and Jose-Luis Maúrtua (Peru), featuring a range of works for solo alto saxophone to alto saxophone with piano, alto saxophone with vibraphone, and tenor saxophone with electronic tape; thus forming an important selection of Latin American repertoire. Complete recorded performances of all seven pieces are supplemented by biographical, historical, and performance practice suggestions. The result is a written and audio guide to some of the most important pieces composed for classical saxophone in Latin America, with an emphasis on fostering interest in, and research into, composers who have contributed in the development and creation of the instrument in Latin America.
ContributorsOcampo Cardona, Javier Andrés (Author) / McAllister, Timothy (Thesis advisor) / Spring, Robert (Committee member) / Hill, Gary (Committee member) / Pilafian, Sam (Committee member) / Rogers, Rodney (Committee member) / Gardner, Joshua (Committee member) / Arizona State University (Publisher)
Created2011
148168-Thumbnail Image.png
Description

The COVID-19 pandemic has resulted in preventative measures and has led to extensive changes in lifestyle for the vast majority of the American population. As the pandemic progresses, a growing amount of evidence shows that minority groups, such as the Deaf community, are often disproportionately and uniquely affected. Deaf

The COVID-19 pandemic has resulted in preventative measures and has led to extensive changes in lifestyle for the vast majority of the American population. As the pandemic progresses, a growing amount of evidence shows that minority groups, such as the Deaf community, are often disproportionately and uniquely affected. Deaf people are directly affected in their ability to personally socialize and continue with daily routines. More specifically, this can constitute their ability to meet new people, connect with friends/family, and to perform in their work or learning environment. It also may result in further mental health changes and an increased reliance on technology. The impact of COVID-19 on the Deaf community in clinical settings must also be considered. This includes changes in policies for in-person interpreters and a rise in telehealth. Often, these effects can be representative of the pre-existing low health literacy, frequency of miscommunication, poor treatment, and the inconvenience felt by Deaf people when trying to access healthcare. Ultimately, these effects on the Deaf community must be taken into account when attempting to create a full picture of the societal shift caused by COVID-19.

ContributorsAsuncion, David Leonard Esquiera (Co-author) / Dubey, Shreya (Co-author) / Patterson, Lindsey (Thesis director) / Lee, Lindsay (Committee member) / Harrington Bioengineering Program (Contributor) / Department of Physics (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
Description

The Founders lab is a year-long program that gives its students an opportunity to participate in a unique team-based, experiential Barrett honors thesis project to design and apply marketing and sales strategies, as well as business and financial models to start up and launch a new business. This honors thesis

The Founders lab is a year-long program that gives its students an opportunity to participate in a unique team-based, experiential Barrett honors thesis project to design and apply marketing and sales strategies, as well as business and financial models to start up and launch a new business. This honors thesis project focuses on increasing the rate of vaccination outcomes in a country where people are increasingly busy (less time) and unwilling to get a needle through a new business venture that provides a service that brings vaccinations straight to businesses, making them available for their employees. Through our work with the Founders Lab, our team was able to create this pitch deck.

ContributorsHanzlick, Emily Anastasia (Co-author) / Zatonskiy, Albert (Co-author) / Gomez, Isaias (Co-author) / Byrne, Jared (Thesis director) / Hall, Rick (Committee member) / Silverstein, Taylor (Committee member) / Harrington Bioengineering Program (Contributor) / Department of Information Systems (Contributor) / School of Mathematical and Statistical Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
148068-Thumbnail Image.png
Description

Traumatic brain injury (TBI) is a widespread health issue that affects approximately 1.7 million lives per year. The effects of TBI go past the incident of primary injury, as chronic damage can follow for years and cause irreversible neurodegeneration. A potential strategy for repair that has been studied is cell

Traumatic brain injury (TBI) is a widespread health issue that affects approximately 1.7 million lives per year. The effects of TBI go past the incident of primary injury, as chronic damage can follow for years and cause irreversible neurodegeneration. A potential strategy for repair that has been studied is cell transplantation, as neural stem cells improve neurological function. While promising, neural stem cell transplantation presents challenges due to a relatively low survival rate post-implantation and issues with determining the optimal method of transplantation. Shear-thinning hydrogels are a type of hydrogel whose linkages break when under shear stress, exhibiting viscous flow, but reform and recover upon relaxation. Such properties allow them to be easily injected for minimally invasive delivery, while also shielding encapsulated cells from high shear forces, which would normally degrade the function and viability of such cells. As such, it is salient to research whether shear-thinning hydrogels are feasible candidates in neural cell transplantation applications for neuroregenerative medicine. In this honors thesis, shear-thinning hydrogels were formed through guest-host interactions of adamantane modified HA (guest ad-HA) and beta-cyclodextrin modified HA (host CD-HA). The purpose of the study was to characterize the injection force profile of different weight percentages of the HA shear-thinning hydrogel. The break force and average glide force were also compared between the differing weight percentages. By understanding the force exerted on the hydrogel when being injected, we could characterize how neural cells may respond to encapsulation and injection within HA shear-thinning hydrogels. We identified that 5% weight HA hydrogel required greater injection force than 4% weight HA hydrogel to be fully delivered. Such contexts are valuable, as this implies that higher weight percentage gels impart higher shear forces on encapsulated cells than lower weight gels. Further study is required to optimize our injection force system’s sensitivity and to investigate if cell encapsulation increases the force required for injection.

ContributorsZhang, Irene (Author) / Stabenfeldt, Sarah (Thesis director) / Holloway, Julianne (Committee member) / Harrington Bioengineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
148082-Thumbnail Image.png
Description

There are many challenges in designing neuroprostheses and one of them is to maintain proper axon selectivity in all situations. This project is based on an electrode that is implanted into a fascicle in a peripheral nerve and used to provide tactile sensory feedback of a prosthetic arm. This fascicle

There are many challenges in designing neuroprostheses and one of them is to maintain proper axon selectivity in all situations. This project is based on an electrode that is implanted into a fascicle in a peripheral nerve and used to provide tactile sensory feedback of a prosthetic arm. This fascicle can undergo mechanical deformation during every day motion. This work aims to characterize the effect of fascicle deformation on axon selectivity and recruitment when electrically stimulated using hybrid modeling. The main framework consists of combining finite element modeling (FEM) and simulation environment NEURON. A suite of programs was developed to first populate a fascicle with axons followed by deforming the fascicle and rearranging axons accordingly. A model of the fascicle with an implanted electrode is simulated to find the electrical potential profile through FEM. The potential profile is then used to compare which axons are activated in the two conformations of the fascicle using NERUON.

ContributorsDileep, Devika (Author) / Abbas, James (Thesis director) / Sadleir, Rosalind (Committee member) / Harrington Bioengineering Program (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
148088-Thumbnail Image.png
Description

Colorimetric assays are an important tool in point-of-care testing that offers several advantages to traditional testing methods such as rapid response times and inexpensive costs. A factor that currently limits the portability and accessibility of these assays are methods that can objectively determine the results of these assays. Current solutions

Colorimetric assays are an important tool in point-of-care testing that offers several advantages to traditional testing methods such as rapid response times and inexpensive costs. A factor that currently limits the portability and accessibility of these assays are methods that can objectively determine the results of these assays. Current solutions consist of creating a test reader that standardizes the conditions the strip is under before being measured in some way. However, this increases the cost and decreases the portability of these assays. The focus of this study is to create a machine learning algorithm that can objectively determine results of colorimetric assays under varying conditions. To ensure the flexibility of a model to several types of colorimetric assays, three models were trained on the same convolutional neural network with different datasets. The images these models are trained on consist of positive and negative images of ETG, fentanyl, and HPV Antibodies test strips taken under different lighting and background conditions. A fourth model is trained on an image set composed of all three strip types. The results from these models show it is able to predict positive and negative results to a high level of accuracy.

ContributorsFisher, Rachel (Author) / Blain Christen, Jennifer (Thesis director) / Anderson, Karen (Committee member) / School of Life Sciences (Contributor) / Harrington Bioengineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
147931-Thumbnail Image.png
Description

This analysis explores what the time needed to harden, and time needed to degrade is of a PLGA bead, as well as whether the size of the needle injecting the bead and the addition of a drug (Vismodegib) may affect these variables. Polymer degradation and hardening are critical to understand

This analysis explores what the time needed to harden, and time needed to degrade is of a PLGA bead, as well as whether the size of the needle injecting the bead and the addition of a drug (Vismodegib) may affect these variables. Polymer degradation and hardening are critical to understand for the polymer’s use in clinical settings, as these factors help determine the patients’ and healthcare providers’ use of the drug and estimated treatment time. Based on the literature, it is expected that the natural logarithmic polymer mass degradation forms a linear relationship to time. Polymer hardening was tested by taking video recordings of gelatin plates as they are injected with microneedles and performing RGB analysis on the polymer “beads” created. Our results for the polymer degradation experiments showed that the polymer hardened for all solutions and trials within approximately 1 minute, presenting a small amount of time in which the patient would have to remain motionless in the affected area. Both polymer bead size and drug concentration may have had a modest impact on the hardening time experiments, while bead size may affect the time required for the polymer to degrade. Based on the results, the polymer degradation is expected to last multiple weeks, which may allow for the polymer to be used as a long-term drug delivery system in treatment of basal cell carcinoma.

ContributorsEltze, Maren Caterina (Author) / Vernon, Brent (Thesis director) / Buneo, Christopher (Committee member) / Harrington Bioengineering Program (Contributor) / School of International Letters and Cultures (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05