Matching Items (396)
Filtering by

Clear all filters

164640-Thumbnail Image.png
Description

X-ray phase contrast imaging (XPCI) is a novel imaging method that utilizes phase information of X-rays in order to produce images. XPCI allows for highly resolved features that traditional X-ray imaging modalities cannot discern. The objective of this experiment was to model initial simulations predicting the output signal of the

X-ray phase contrast imaging (XPCI) is a novel imaging method that utilizes phase information of X-rays in order to produce images. XPCI allows for highly resolved features that traditional X-ray imaging modalities cannot discern. The objective of this experiment was to model initial simulations predicting the output signal of the future compact x-ray free electron laser (CXFEL) XPCI source. The signal was reported in tonal values (“counts”), where MATLAB and MATLAB App Designer were the computing environments used to develop the simulations. The experimental setup’s components included a yttrium aluminum garnet (YAG) scintillating screen, mirror, and Mako G-507C camera with a Sony IMX264 sensor. The main function of the setup was to aim the X-rays at the YAG screen, then measure its scintillation through the photons emitted that hit the camera sensor. The resulting quantity used to assess the signal strength was tonal values (“counts”) per pixel on the sensor. Data for X-ray transmission through water, air, and polyimide was sourced from The Center for X-ray Optics’s simulations website, after which the data was interpolated and referenced in MATLAB. Matrices were an integral part of the saturation calculations; field-of-view (FOV), magnification and photon energies were also necessary. All the calculations were compiled into a graphical user interface (GUI) using App Designer. The code used to build this GUI can be used as a template for later, more complex GUIs and is a great starting point for future work in XPCI research at CXFEL.

ContributorsDela Rosa, Trixia (Author) / Graves, William (Thesis director) / King, Dakota (Committee member) / Barrett, The Honors College (Contributor) / Harrington Bioengineering Program (Contributor)
Created2022-05
164641-Thumbnail Image.jpg
Description

X-ray phase contrast imaging (XPCI) is a novel imaging method that utilizes phase information of X-rays in order to produce images. XPCI allows for highly resolved features that traditional X-ray imaging modalities cannot discern. The objective of this experiment was to model initial simulations predicting the output signal of the

X-ray phase contrast imaging (XPCI) is a novel imaging method that utilizes phase information of X-rays in order to produce images. XPCI allows for highly resolved features that traditional X-ray imaging modalities cannot discern. The objective of this experiment was to model initial simulations predicting the output signal of the future compact x-ray free electron laser (CXFEL) XPCI source. The signal was reported in tonal values (“counts”), where MATLAB and MATLAB App Designer were the computing environments used to develop the simulations. The experimental setup’s components included a yttrium aluminum garnet (YAG) scintillating screen, mirror, and Mako G-507C camera with a Sony IMX264 sensor. The main function of the setup was to aim the X-rays at the YAG screen, then measure its scintillation through the photons emitted that hit the camera sensor. The resulting quantity used to assess the signal strength was tonal values (“counts”) per pixel on the sensor. Data for X-ray transmission through water, air, and polyimide was sourced from The Center for X-ray Optics’s simulations website, after which the data was interpolated and referenced in MATLAB. Matrices were an integral part of the saturation calculations; field-of-view (FOV), magnification and photon energies were also necessary. All the calculations were compiled into a graphical user interface (GUI) using App Designer. The code used to build this GUI can be used as a template for later, more complex GUIs and is a great starting point for future work in XPCI research at CXFEL.

ContributorsDela Rosa, Trixia (Author) / Graves, William (Thesis director) / King, Dakota (Committee member) / Barrett, The Honors College (Contributor) / Harrington Bioengineering Program (Contributor)
Created2022-05
164461-Thumbnail Image.png
Description

Patients need to know current and available options for prosthetic devices. Devices are categorized depending on the region of amputation and their purpose. Retrospection on the history of prosthetic devices leading into modern ones allows for an interpretation of successes and necessary improvements moving forward. One promising avenue for prostheses

Patients need to know current and available options for prosthetic devices. Devices are categorized depending on the region of amputation and their purpose. Retrospection on the history of prosthetic devices leading into modern ones allows for an interpretation of successes and necessary improvements moving forward. One promising avenue for prostheses is the development of neuroprostheses that much more closely resemble some of the functionality taken for granted in natural limbs. Proprioception, more commonly known as the ‘sixth sense’, would be a very desirable characteristic of these devices and is the subject of current research efforts. In the meantime, it is necessary to help patients evaluate what products are out there that identify more strongly with their individualized preferences.

ContributorsClemmer, Brodie (Author) / Helms-Tillery, Stephen (Thesis director) / Hartwell, Leland (Committee member) / Barrett, The Honors College (Contributor) / Dean, W.P. Carey School of Business (Contributor) / Harrington Bioengineering Program (Contributor)
Created2022-05
164710-Thumbnail Image.png
Description

Regenerative medicine utilizes living cells as therapeutics to replace or repair damaged or diseased tissue, but the manufacturing processes to produce cell-based tissue products require customized biounit operations that do not currently exist as conventional biochemical and biopharma manufacturing processes. Living cells are constantly changing and reacting to their environment,

Regenerative medicine utilizes living cells as therapeutics to replace or repair damaged or diseased tissue, but the manufacturing processes to produce cell-based tissue products require customized biounit operations that do not currently exist as conventional biochemical and biopharma manufacturing processes. Living cells are constantly changing and reacting to their environment, which in the case of cells isolated from their hosts, are utilized as living bioreactor components that, by themselves, are manipulated to biomanufacturer selected tissue products. Therefore, specialized technology is required to assure that cellular products produce the phenotypical tissue characteristics that the final product is designated to have, while also maintaining sterility of the culture. Because of this, FDA guidelines encourage the use of Process Analytical Technology (PAT – see Ref ) to be integrated into manufacturing systems of biologics to ensure quality and safety. To address the need for evaluation of sensor technologies for potential use in PAT, a literature review of both existing sensing technologies and biomarkers was conducted. After a thorough assessment of the sensor technologies that were most applicable to biomanufacturing, spectrophotometry was selected to monitor the metabolic components glucose and lactate of living cells in culture in real time. Initially, spectrophotometric measurements were taken of mock solutions of glucose and lactate solutions at concentrations relevant to human cell culture and physiology. With that data, a mathematical model was developed to predict a solution’s glucose and lactate concentration. This model was then integrated into a Matlab program that was used to continuously monitor and estimate solutions of glucose and lactate concentrations in real time. After testing the accuracy of this program in different solutions, it was determined that calibration curves and models must be made for each media type and estimates of glucose and lactate were found accurate only at higher concentrations. This program was successfully utilized to monitor in real time glucose and lactate production and consumption trends of Mesenchymal Stem Cells (MSCs) in culture, demonstrating proof-of-concept of the proposed bioprocess monitoring schema.

ContributorsBerger, Aubrey (Author) / Pizziconi, Vincent (Thesis director) / Wang, Xiao (Committee member) / Barrett, The Honors College (Contributor) / Harrington Bioengineering Program (Contributor) / School of Mathematical and Statistical Sciences (Contributor)
Created2022-05
164188-Thumbnail Image.png
Description

My honors thesis focuses on the technological aspects and the legal impacts of prosthetics and advanced prosthetics. There is a lot of case law dealing with early prosthetics when it comes to worker’s compensation, airport security, prisons and sports. However, there has been little case law that has dealt with

My honors thesis focuses on the technological aspects and the legal impacts of prosthetics and advanced prosthetics. There is a lot of case law dealing with early prosthetics when it comes to worker’s compensation, airport security, prisons and sports. However, there has been little case law that has dealt with advanced prosthetics. As prosthetic limbs become more technologically advanced and intertwined with one’s identity, it is crucial that laws are made to draw a new line between person and property. The innovation of prosthetic limbs has just begun and will surely face setbacks along the way, but the benefits will be worth it once the law catches up with the rapidly advancing technology.

ContributorsRogers, Madison (Author) / Marchant, Gary (Thesis director) / Schaefer, Sydney (Committee member) / Barrett, The Honors College (Contributor) / Harrington Bioengineering Program (Contributor)
Created2022-05
163463-Thumbnail Image.png
Description

Annually approximately 1.5 million Americans suffer from a traumatic brain injury (TBI) increasing the risk of developing a further neurological complication later in life [1-3]. The molecular drivers of the subsequent ensuing pathologies after the initial injury event are vast and include signaling processes that may contribute to neurodegenerative diseases

Annually approximately 1.5 million Americans suffer from a traumatic brain injury (TBI) increasing the risk of developing a further neurological complication later in life [1-3]. The molecular drivers of the subsequent ensuing pathologies after the initial injury event are vast and include signaling processes that may contribute to neurodegenerative diseases such as Alzheimer’s Disease (AD). One such molecular signaling pathway that may link TBI to AD is necroptosis. Necroptosis is an atypical mode of cell death compared with traditional apoptosis, both of which have been demonstrated to be present post-TBI [4-6]. Necroptosis is initiated by tissue necrosis factor (TNF) signaling through the RIPK1/RIPK3/MLKL pathway, leading to cell failure and subsequent death. Prior studies in rodent TBI models report necroptotic activity acutely after injury, within 48 hours. Here, the study objective was to recapitulate prior data and characterize MLKL and RIPK1 cortical expression post-TBI with our lab’s controlled cortical impact mouse model. Using standard immunohistochemistry approaches, it was determined that the tissue sections acquired by prior lab members were of poor quality to conduct robust MLKL and RIPK1 immunostaining assessment. Therefore, the thesis focused on presenting the staining method completed. The discussion also expanded on expected results from these studies regarding the spatial distribution necroptotic signaling in this TBI model.

ContributorsHuber, Kristin (Author) / Stabenfeldt, Sarah (Thesis director) / Brafman, David (Committee member) / Barrett, The Honors College (Contributor) / Harrington Bioengineering Program (Contributor) / School of Molecular Sciences (Contributor)
Created2022-05
Description

This honors thesis explores using machine learning technology to assist a patient's return to activity following a significant injury, specifically an anterior cruciate ligament (ACL) tear. The goal of the project was to determine if a machine learning model trained with ACL reconstruction (ACLR) applicable injury data would be able

This honors thesis explores using machine learning technology to assist a patient's return to activity following a significant injury, specifically an anterior cruciate ligament (ACL) tear. The goal of the project was to determine if a machine learning model trained with ACL reconstruction (ACLR) applicable injury data would be able to correctly predict which phase of return to sport a patient would be classified in when introduced to a new data set.

ContributorsBernstein, Daniel (Author) / Pizziconi, Vincent (Thesis director) / Glattke, Kaycee (Committee member) / Barrett, The Honors College (Contributor) / Harrington Bioengineering Program (Contributor)
Created2023-05
Description

The following paper builds upon version one of The Women’s Power and Influence Index (WPI). The WPI Index is a product created by The Difference Engine, a center at ASU, to address gender inequality in the workplace. The WPI Index ranks Fortune 500 companies on various criteria and releases the

The following paper builds upon version one of The Women’s Power and Influence Index (WPI). The WPI Index is a product created by The Difference Engine, a center at ASU, to address gender inequality in the workplace. The WPI Index ranks Fortune 500 companies on various criteria and releases the information to the public in an easy-to-understand manner. Following the first release in 2021, we aim to help the WPI Index continue to grow by researching social movements that can inspire the Index, suggesting additional criteria for version 1.5, and raising awareness through events and social media. Part I of the paper details how social movements have utilized social pressure and social media to create broad change, setting the stage for the WPI Index’s public rankings to incentivize change. Part II provides research on new criteria we propose to be added to the Index for the next release. Lastly, part III covers how we used Tik Tok, events, and partnerships to help the Index gain notoriety. Altogether the paper suggests new directions and provides scientific research to further the goals of the WPI Index.

ContributorsLee, Chiao Shan (Author) / Amare, Esete (Co-author) / Devries, Alexis (Co-author) / Holly, Sydney (Co-author) / Zaffar, Ehsan (Thesis director) / Gel, Esma (Committee member) / Barrett, The Honors College (Contributor) / Harrington Bioengineering Program (Contributor)
Created2023-05
165578-Thumbnail Image.png
Description
There are 6 methods of persuasion: reciprocity, scarcity, authority, commitment, liking, and social proof. Although these are typically used in economic scenarios, they may be present between professors and their students as well. We surveyed ASU students to find out which methods of persuasion professors may be implementing in their

There are 6 methods of persuasion: reciprocity, scarcity, authority, commitment, liking, and social proof. Although these are typically used in economic scenarios, they may be present between professors and their students as well. We surveyed ASU students to find out which methods of persuasion professors may be implementing in their classrooms, and whether or not these were effective in improving student outcomes (performance, memory, etc.).
ContributorsPautz, Daniella (Author) / Honeycutt, Claire (Thesis director) / Krause, Stephen (Committee member) / Barrett, The Honors College (Contributor) / Harrington Bioengineering Program (Contributor)
Created2022-05
Description
Traumatic brain injury (TBI) poses a significant global health concern with substantial health and economic consequences. Patients often face significant consequences after injury, notably persistent cognitive changes and an increased risk of developing neurodegenerative disease later in life. Apart from the immediate insult, the resulting inflammatory response can lead to

Traumatic brain injury (TBI) poses a significant global health concern with substantial health and economic consequences. Patients often face significant consequences after injury, notably persistent cognitive changes and an increased risk of developing neurodegenerative disease later in life. Apart from the immediate insult, the resulting inflammatory response can lead to neuroinflammation, oxidative stress, tissue death, and long-term neurodegeneration. Microglia and astrocytes play critical roles in these inflammatory processes, emphasizing the unmet need for targeted therapies. Vaccine formulations consisting of poly (a-ketoglutarate) (paKG) microparticles (MPs) encapsulating PFK15 (1-(4-pyridinyl)-3-(2-quinolinyl)-2-propen-1-one) and myelin proteolipid protein (PLP) were developed for prior studies and have demonstrated the production of antigen-specific adaptive T-cell responses in the brain, spleen, and lymph nodes of mice, suggesting that these formulations may be able to prevent neuronal inflammation in mice after TBI. The vaccine efficacy was further evaluated through the image analysis of immunohistochemically stained brain tissue sections from naive, saline, and paKG(PFK15+PLP) MPs or paKG(PFK15) MPs treated mice. Though microglia (Iba1), astrocytes (GFAP) and CD86 were visualized in this method, only Iba1 was found to be significantly reduced in the contralateral hemisphere for paKG(PFK15+PLP) MPs and paKG(PFK15) MPs groups when compared to naive (p=0.0373 and p=0.0186, respectively). However, the naive group also showed an unexpectedly high level of CD86 after thresholding (compared to the TBI groups), indicating flaws were present in the analysis pipeline. Challenges of the image analysis process included thresholding setting optimization, folded tissues, bubbles, and saturated punctate signal. These issues may have impacted data accuracy, underscoring the need for rigorous optimization of experimental techniques and imaging methodologies when evaluating the therapeutic potential of the vaccines in mitigating TBI-induced neuroinflammation. Thus, future analyses should consider microglial morphology and employ more accurate thresholding in FIJI/ImageJ to better measure cellular activation and the overall positive signal.
ContributorsSundem, Andrea (Author) / Stabenfeldt, Sarah (Thesis director) / Willingham, Crystal (Committee member) / Barrett, The Honors College (Contributor) / Harrington Bioengineering Program (Contributor)
Created2024-05