Matching Items (22)
Filtering by

Clear all filters

135335-Thumbnail Image.png
Description
Memory CD8+ T-cells can persist in the absence of antigen, primed for immediate activation and proliferation if later exposed to the same antigen. These cytotoxic lymphocytes provide long-term immunity following an acute infection. Studies have observed that intermediate levels of general T cell transfer prior to infection may cause an

Memory CD8+ T-cells can persist in the absence of antigen, primed for immediate activation and proliferation if later exposed to the same antigen. These cytotoxic lymphocytes provide long-term immunity following an acute infection. Studies have observed that intermediate levels of general T cell transfer prior to infection may cause an inappropriate response resulting in increased pathology rather than prevention. Therefore, our study focused on a memory CD8 T-cell therapy using lymphocytic choriomeningitis virus (LCMV) specific splenocytes, which activate and proliferate at an accelerated pace compared to that of naive T-cells. LCMV is a natural murine pathogen which also poses a zoonotic infection threat to humans, and the effect of immune cell vaccination therapies for LCMV is not fully understood. We observed the effect of multiple memory CD8 T cell dosage levels on overall disease and memory CD8 T-cell response to the virus. Infection by exposure to a carrier was shown to have a reduced impact on mice receiving higher doses of memory T cells prior to infection compared to mice receiving less or no memory cells. Higher presence of activated memory cells were shown to correlate with less disease-related weight loss and accelerated recovery times. Survival rate after exposure to carriers was not shown to be affected by dosage level, warranting further research regarding the prevalence of the immunopathology observed in other studies in natural murine transmission models.
ContributorsMiller, Charles (Author) / Blattman, Joseph (Thesis director) / Holechek, Susan (Committee member) / Carmen, Joshua (Committee member) / W. P. Carey School of Business (Contributor) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
136186-Thumbnail Image.png
Description
Among wild rodent populations, vertical transmission is believed to constitute the primary route of infection for Lymphocytic Choriomeningitis Virus (LCMV), a non-lytic arenavirus with both acute and chronic forms. When carrier mice infected at birth with the acute Armstrong strain reproduce, they generate congenital carrier offspring containing a quasispecies of

Among wild rodent populations, vertical transmission is believed to constitute the primary route of infection for Lymphocytic Choriomeningitis Virus (LCMV), a non-lytic arenavirus with both acute and chronic forms. When carrier mice infected at birth with the acute Armstrong strain reproduce, they generate congenital carrier offspring containing a quasispecies of LCMV that includes Armstrong as well as its chronic Clone-13 variant. This study examined the genetic trends in the vertical transmission of LCMV from mothers infected perinatally with Clone-13. Viral isolates obtained from the serum of congenital carrier offspring were partially sequenced to reveal residue 260 in the glycoprotein-encoding region of their S segment, the site of a major amino acid change differentiating the chronic and acute strains. It was found that the phenylalanine-to-leucine mutation associated with Clone-13 was present in 100% of the isolates, strongly indicating that the offspring of Clone-13 carriers contain exclusively the chronic variant. This research has broad implications for the epidemiology of the virus, and, given the predominance of Armstrong in the wild, suggests that there must be a biological cost associated with Clone-13 infection in non-carriers.
ContributorsFrear, Cody Christian (Author) / Blattman, Joseph (Thesis director) / Hogue, Brenda (Committee member) / Holechek, Susan (Committee member) / Barrett, The Honors College (Contributor) / School of Human Evolution and Social Change (Contributor) / School of Life Sciences (Contributor)
Created2015-05
133395-Thumbnail Image.png
Description
Stroke is a devastating disease that affects thousands of individuals each year. Stroke, specifically cerebral ischemia, and immune responses are important areas of study and focus. Previous studies on stroke in mouse models had shown the upregulation of a specific micro-RNA: miR-1224. We hypothesized that miR-1224 was responsible for the

Stroke is a devastating disease that affects thousands of individuals each year. Stroke, specifically cerebral ischemia, and immune responses are important areas of study and focus. Previous studies on stroke in mouse models had shown the upregulation of a specific micro-RNA: miR-1224. We hypothesized that miR-1224 was responsible for the regulation of the ST2 receptor protein’s expression. We performed cellular transfection on murine splenocytes with four different miRNAs—miR-1224-mimic, miR-1224-inhibitor, miR-451-mimic, and a control. We predicted that transfection with 1224m would decrease ST2 expression, while transfection with 1224i would increase ST2 expression. Two complete trials were run, and analysis of the results included RT-PCR of both miRNA samples and mRNA samples to confirm transfection and controlled transcription. Reverse transcription and qPCR of miRNA was done in order to confirm that transfection was in fact successful. Reverse transcription and qPCR of the mRNA was done in order to confirm that ST2 mRNA was not altered; this allowed us to attribute any changes in ST2 protein levels to miRNA interactions, as the mRNA levels were consistent. Western blotting was done in order to assess relative protein content. We found that transfection with 1224m slightly decreased ST2 expression and transfection with 1224i slightly increased ST2 expression, however, after assessing the p-values through statistical analyses, neither difference was significant. As such, our hypothesis was rejected as it is not evident that miR-1224 plays a significant role on ST2 gene expression. Future studies are needed in order to analyze alternate protein targets to fully assess the role of miR-1224.
ContributorsReddy, Nihaal (Author) / Holechek, Susan (Thesis director) / Ahmad, Saif (Committee member) / Wood, Kristofer (Committee member) / School of Human Evolution and Social Change (Contributor) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
132806-Thumbnail Image.png
Description
The 2017-2018 Influenza season was marked by the death of 80,000 Americans: the highest flu-related death toll in a decade. Further, the yearly economic toll to the US healthcare system and society is on the order of tens of billions of dollars. It is vital that we gain a better

The 2017-2018 Influenza season was marked by the death of 80,000 Americans: the highest flu-related death toll in a decade. Further, the yearly economic toll to the US healthcare system and society is on the order of tens of billions of dollars. It is vital that we gain a better understanding of the dynamics of influenza transmission in order to prevent its spread. Viral DNA sequences examined using bioinformatics methods offer a rich framework with which to monitor the evolution and spread of influenza for public health surveillance. To better understand the influenza epidemic during the severe 2017-2018 season, we established a passive surveillance system at Arizona State University’s Tempe Campus Health Services beginning in January 2018. From this system, nasopharyngeal samples screening positive for influenza were collected. Using these samples, molecular DNA sequences will be generated using a combined multiplex RT-PCR and NGS approach. Phylogenetic analysis will be used to infer the severity and temporal course of the 2017-2018 influenza outbreak on campus as well as the 2018-2019 flu season. Through this surveillance system, we will gain knowledge of the dynamics of influenza spread in a university setting and will use this information to inform public health strategies.
ContributorsMendoza, Lydia Marie (Author) / Scotch, Matthew (Thesis director) / Hogue, Brenda (Committee member) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
136975-Thumbnail Image.png
Description
Dengue virus infects millions of people every year. Yet there is still no vaccine available to prevent it. Here we use a neutralizing epitope determinant on the dengue envelope (E) protein as an immunogen to be vectored by a measles virus (MV) vaccine. However the domain III (DIII) of the

Dengue virus infects millions of people every year. Yet there is still no vaccine available to prevent it. Here we use a neutralizing epitope determinant on the dengue envelope (E) protein as an immunogen to be vectored by a measles virus (MV) vaccine. However the domain III (DIII) of the dengue 2 E protein is too small to be immunogenic by itself. In order for it to be displayed on a larger particle, it was inserted into the amino terminus of small hepatitis B surface antigen (HBsAg, S) coding sequence. To generate the recombinant MV vector and verify the efficiency of this concept, a reverse genetics system was used where the MV vectors express one or two additional transcription units to direct the assembly of hybrid HBsAg particles. Two types of recombinant measles virus were produced: pB(+)MVvac2(DIII-S,S)P and pB(+)MVvac2(DIII-S)N. Virus recovered from pB(+)MVvac2(DIII-S,S)P was viable. An ELISA assay was performed to demonstrate the expression and secretion of HBsAg. Supernatant from MVvac2(DIII-S,S)P infected cells confirmed that hybrid HBsAg-domain III particles with a density similar to traditional HBsAg particles were released. Characteristics of the subviral particle have been analyzed for the successful incorporation of domain III. The replication fitness of the recombinant MV was evaluated using multi-step growth kinetics and showed reduced replication fitness when compared to the parental strain MVvac2. This demonstrates that viral replication is hindered by the addition of the two inserts into MV genome. Further analysis of MVvac2(DIII-S)N is needed to justify immune response studies in a small animal model using both of the generated recombinant vectors.
ContributorsHarahap, Indira Saridewi (Author) / Reyes del Valle, Jorge (Thesis director) / Hogue, Brenda (Committee member) / Misra, Rajeev (Committee member) / Barrett, The Honors College (Contributor) / T. Denny Sanford School of Social and Family Dynamics (Contributor) / School of Human Evolution and Social Change (Contributor) / School of Life Sciences (Contributor)
Created2014-05
135259-Thumbnail Image.png
Description
Pathogens such as lymphocytic choriomeningitis virus (LCMV) cause abnormalities in the nervous system of developing mice and humans. While humans are able to recover from infection and clear the virus, the mouse immune system tolerates the virus and lifelong infection ensues. In order to understand the factors driving LCMV evolution

Pathogens such as lymphocytic choriomeningitis virus (LCMV) cause abnormalities in the nervous system of developing mice and humans. While humans are able to recover from infection and clear the virus, the mouse immune system tolerates the virus and lifelong infection ensues. In order to understand the factors driving LCMV evolution and evaluate its neuropathogenesis, a mouse model was needed. To establish congenital infection, newborn C57BL/6J mice were intra-cerebrally (i.c.) injected with 1 x 103 PFU LCMV Armstrong. Mice failed to thrive, resulting in a linear reduction in survival over the following two weeks and overall survival of 13%. Surviving mice did not have virus in their circulation after thirty days. As an alternative, 500 PFU of LCMV Armstrong was injected intraperitoneally (i.p.) into other litters. While this was associated with significantly reduced mortality, no mice in this group developed persistent infection either. ELISAs revealed that the mothers of injected pups developed a robust humoral response, confirming earlier reports that contact-associated acute infection occurs (Hotchin, 1971). In addition, the offspring of two litters of mice (out of six tested) also had antibodies to the virus, but at slightly lower titers. This indicates that the humoral response of the mothers may play a role in the neonatal clearance of infection. A higher titer of LCMV in i.p. injections may be necessary to overcome these barriers and establish chronic infection. In contrast, a lower dose of LCMV is recommended for i.c. injections, as the mortality seemed directly linked to the effects of the virus on offspring growth and development. Exposure to the virus in utero may also be necessary to increase survival and the likelihood of chronic infection.
ContributorsMorrow, Kristen Nicole (Author) / Blattman, Joseph (Thesis director) / Holechek, Susan (Committee member) / Franco, Lina (Committee member) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
134727-Thumbnail Image.png
Description
Stress granules are cytoplasmic foci that form in response to various types of cellular stress, including viral infection. They contain mRNA, translation initiation factors, the small ribosomal subunit, RNA binding proteins, and other unique components depending on the type of stress the cell is under. Stress granules are thought to

Stress granules are cytoplasmic foci that form in response to various types of cellular stress, including viral infection. They contain mRNA, translation initiation factors, the small ribosomal subunit, RNA binding proteins, and other unique components depending on the type of stress the cell is under. Stress granules are thought to store these components until the stress as passed at which time the mRNA resumes translation. They also have an active role in the cell's antiviral response and are required for efficient induction of the interferon pathway. There are many viruses that induce or interfere with stress granules, including poliovirus. Poliovirus is a positive sense RNA virus that is part of the Picornaviridae family. Stress granules in poliovirus infected cells differ from stress granules in cells undergoing other types of stress because they contain the RNA binding protein Sam68, their formation is dependent on RNA export by the Crm1 pathway, and they are induced by poliovirus cleavage of eIF4G and PABP. It was found previously that Sam68 is found in the stress granules of poliovirus infected HeLa cells but not in oxidative stress of heat shock induced stress granules. My research shows that this finding is true in other cell lines and thus represents a biologically significant finding. The Crm1 pathway exports snRNAs and some mRNAs, rRNAs, and proteins. To determine which of these classes of RNA is necessary for stress granule formation in poliovirus infected cells but not in cells undergoing other types of stress, plasmids with modified PHAX protein were used to isolate the snRNA export pathway. More work needs to be done to determine the impact of snRNA export on stress granule formation. This research could eventually help us better understand the cell's anti-viral response and have implications for how we treat viral infections.
ContributorsErickson, Caroline Rose (Author) / Hogue, Brenda (Thesis director) / Gustin, Kurt (Committee member) / School of Life Sciences (Contributor) / Department of Management and Entrepreneurship (Contributor) / Barrett, The Honors College (Contributor)
Created2016-12
132849-Thumbnail Image.png
Description
Within our current educational infrastructure, there’s a lack of substantial preventive care knowledge present among elementary schoolchildren. With education cuts occurring statewide, many schools are left impoverished and schools are incapable of implementing various programs to benefit their local communities. This endeavor aims to visit public and charter elementary schools

Within our current educational infrastructure, there’s a lack of substantial preventive care knowledge present among elementary schoolchildren. With education cuts occurring statewide, many schools are left impoverished and schools are incapable of implementing various programs to benefit their local communities. This endeavor aims to visit public and charter elementary schools in the Phoenix Valley to educate youth regarding easily avoidable health risks by implementing healthy eating habits and exercise. Project BandAid will immerse students ages 7-9 in hands-on activities to enhance their knowledge on hygiene, healthy eating habits, and safety. This project incorporated funding from the Woodside Community Action Grant and Barrett, the Honors College as well as the help from Alpha Epsilon Delta (AED) volunteers.
ContributorsCovarrubias, Sidney Alicia (Co-author) / Kothari, Karishma (Co-author) / John, Benson (Co-author) / Fette, Donald (Thesis director) / Holechek, Susan (Committee member) / Sanford School of Social and Family Dynamics (Contributor) / School of Molecular Sciences (Contributor) / School for the Future of Innovation in Society (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
134334-Thumbnail Image.png
Description
Coronaviruses are a significant group of viruses that cause enteric and respiratory infections in a variety of animals, including humans. Outbreaks of Severe Acute Respiratory Syndrome (SARS) and Middle Eastern Respiratory Syndrome (MERS) in the past 15 years has increased research into coronaviruses to gain an understanding of their structure

Coronaviruses are a significant group of viruses that cause enteric and respiratory infections in a variety of animals, including humans. Outbreaks of Severe Acute Respiratory Syndrome (SARS) and Middle Eastern Respiratory Syndrome (MERS) in the past 15 years has increased research into coronaviruses to gain an understanding of their structure and function so one day therapies and vaccines may be produced. These viruses have four main structural proteins: the spike, nucleocapsid, envelope, and membrane proteins. The envelope (E) protein is an integral membrane protein in the viral envelope that acts as a viroporin for transport of cations and plays an important role in pathogenesis and viral assembly. E contains a hydrophobic transmembrane domain with polar residues that is conserved across coronavirus species and may be significant to its function. This experiment looks at the possible role of one polar residue in assembly, the 15th residue glutamine, in the Mouse Hepatitis Virus (MHV) E protein. The glutamine 15 residue was mutated into positively charged residues lysine or arginine. Plasmids with these mutations were co-expressed with the membrane protein (M) gene to produce virus-like particles (VLPs). VLPs are produced when E and M are co-expressed together and model assembly of the coronavirus envelope, but they are not infectious as they do not contain the viral genome. Observing their production with the mutated E protein gives insight into the role the glutamine residue plays in assembly. The experiment showed that a changing glutamine 15 to positive charges does not appear to significantly affect the assembly of the VLPs, indicating that this specific residue may not have a large impact on viral assembly.
ContributorsHaller, Sarah S. (Author) / Hogue, Brenda (Thesis director) / Liu, Wei (Committee member) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor) / Biodesign Institute (Contributor)
Created2017-05
134018-Thumbnail Image.png
Description
Approximately 248 million people in the world are currently living with chronic Hepatitis B virus (HBV) infection. HBV and HCV infections are the primary cause of liver diseases such as cirrhosis and hepatocellular carcinomas in the world with an estimated 1.4 million deaths annually. HBV in the Republic of Peru

Approximately 248 million people in the world are currently living with chronic Hepatitis B virus (HBV) infection. HBV and HCV infections are the primary cause of liver diseases such as cirrhosis and hepatocellular carcinomas in the world with an estimated 1.4 million deaths annually. HBV in the Republic of Peru was used as a case study of an emerging and rapidly spreading disease in a developing nation. Wherein, clinical diagnosis of HBV infections in at-risk communities such the Amazon Region and the Andes Mountains are challenging due to a myriad of reasons. High prices of clinical diagnosis and limited access to treatment are alone the most significant deterrent for individuals living in at-risk communities to get the much need help. Additionally, limited testing facilities, lack of adequate testing policies or national guidelines, poor laboratory capacity, resource-limited settings, geographical isolation, and public mistrust are among the chief reasons for low HBV testing. Although, preventative vaccination programs deployed by the Peruvian health officials have reduced the number of infected individuals by year and region. To significantly reduce or eradicate HBV in hyperendemic areas and countries such as Peru, preventative clinical diagnosis and vaccination programs are an absolute necessity. Consequently, the need for a portable low-priced diagnostic platform for the detection of HBV and other diseases is substantial and urgent not only in Peru but worldwide. Some of these concerns were addressed by designing a low-cost, rapid detection platform. In that, an immunosignature technology (IMST) slide used to test for reactivity against the presence of antibodies in the serum-sample was used to test for picture resolution and clarity. IMST slides were scanned using a smartphone camera placed on top of the designed device housing a circuit of 32 LED lights at 647 nm, an optical magnifier at 15X, and a linear polarizing film sheet. Tow 9V batteries powered the scanning device LED circuit ensuring enough lighting. The resulting pictures from the first prototype showed that by lighting the device at 647 nm and using a smartphone camera, the camera could capture high-resolution images. These results conclusively indicate that with any modern smartphone camera, a small box lighted to 647 nm, and optical magnifier; a powerful and expensive laboratory scanning machine can be replaced by another that is inexpensive, portable and ready to use anywhere.
ContributorsMakimaa, Heyde (Author) / Holechek, Susan (Thesis director) / Stafford, Phillip (Committee member) / Jayasuriya, Suren (Committee member) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05