Matching Items (33)
152325-Thumbnail Image.png
Description
The brain is a fundamental target of the stress response that promotes adaptation and survival but the repeated activation of the stress response has the potential alter cognition, emotion, and motivation, key functions of the limbic system. Three structures of the limbic system in particular, the hippocampus, medial prefrontal cortex

The brain is a fundamental target of the stress response that promotes adaptation and survival but the repeated activation of the stress response has the potential alter cognition, emotion, and motivation, key functions of the limbic system. Three structures of the limbic system in particular, the hippocampus, medial prefrontal cortex (mPFC), and amygdala, are of special interest due to documented structural changes and their implication in post-traumatic stress disorder (PTSD). One of many notable chronic stress-induced changes include dendritic arbor restructuring, which reflect plasticity patterns in parallel with the direction of alterations observed in functional imaging studies in PTSD patients. For instance, chronic stress produces dendritic retraction in the hippocampus and mPFC, but dendritic hypertrophy in the amygdala, consistent with functional imaging in patients with PTSD. Some have hypothesized that these limbic region's modifications contribute to one's susceptibility to develop PTSD following a traumatic event. Consequently, we used a familiar chronic stress procedure in a rat model to create a vulnerable brain that might develop traits consistent with PTSD when presented with a challenge. In adult male rats, chronic stress by wire mesh restraint (6h/d/21d) was followed by a variety of behavioral tasks including radial arm water maze (RAWM), fear conditioning and extinction, and fear memory reconsolidation to determine chronic stress effects on behaviors mediated by these limbic structures. In chapter 2, we corroborated past findings that chronic stress caused hippocampal CA3 dendritic retraction. Importantly, we present new findings that CA3 dendritic retraction corresponded with poor spatial memory in the RAWM and that these outcomes reversed after a recovery period. In chapter 3, we also showed that chronic stress impaired mPFC-mediated extinction memory, findings that others have reported. Using carefully assessed behavior, we present new findings that chronic stress impacted nonassociative fear by enhancing contextual fear during extinction that generalized to a new context. Moreover, the generalization behavior corresponded with enhanced functional activation in the hippocampus and amygdala during fear extinction memory retrieval. In chapter 5, we showed for the first time that chronic stress enhanced amygdala functional activation during fear memory retrieval, i.e., reactivation. Moreover, these enhanced fear memories were resistant to protein synthesis interference to disrupt a previously formed memory, called reconsolidation in a novel attempt to weaken chronic stress enhanced traumatic memory. Collectively, these studies demonstrated the plastic and dynamic effects of chronic stress on limbic neurocircuitry implicated in PTSD. We showed that chronic stress created a structural and functional imbalance across the hippocampus, mPFC, and amygdala, which lead to a PTSD-like phenotype with persistent and exaggerated fear following fear conditioning. These behavioral disruptions in conjunction with morphological and functional imaging data reflect a chronic stress-induced imbalance between hippocampal and mPFC regulation in favor of amygdala function overdrive, and supports a novel approach for traumatic memory processing in PTSD.
ContributorsHoffman, Ann (Author) / Conrad, Cheryl D. (Thesis advisor) / Olive, M. Foster (Committee member) / Hammer, Jr., Ronald P. (Committee member) / Sanabria, Federico (Committee member) / Arizona State University (Publisher)
Created2013
152286-Thumbnail Image.png
Description
Chronic restraint stress impairs hippocampal-mediated spatial learning and memory, which improves following a post-stress recovery period. Here, we investigated whether brain derived neurotrophic factor (BDNF), a protein important for hippocampal function, would alter the recovery from chronic stress-induced spatial memory deficits. Adult male Sprague-Dawley rats were infused into the hippocampus

Chronic restraint stress impairs hippocampal-mediated spatial learning and memory, which improves following a post-stress recovery period. Here, we investigated whether brain derived neurotrophic factor (BDNF), a protein important for hippocampal function, would alter the recovery from chronic stress-induced spatial memory deficits. Adult male Sprague-Dawley rats were infused into the hippocampus with adeno- associated viral vectors containing the coding sequence for short interfering (si)RNA directed against BDNF or a scrambled sequence (Scr), with both containing the coding information for green fluorescent protein to aid in anatomical localization. Rats were then chronically restrained (wire mesh, 6h/d/21d) and assessed for spatial learning and memory using a radial arm water maze (RAWM) either immediately after stressor cessation (Str-Imm) or following a 21-day post-stress recovery period (Str-Rec). All groups learned the RAWM task similarly, but differed on the memory retention trial. Rats in the Str-Imm group, regardless of viral vector contents, committed more errors in the spatial reference memory domain than did non-stressed controls. Importantly, the typical improvement in spatial memory following recovery from chronic stress was blocked with the siRNA against BDNF, as Str-Rec-siRNA performed worse on the RAWM compared to the non-stressed controls or Str-Rec-Scr. These effects were specific for the reference memory domain as repeated entry errors that reflect spatial working memory were unaffected by stress condition or viral vector contents. These results demonstrate that hippocampal BDNF is necessary for the recovery from stress-induced hippocampal dependent spatial memory deficits in the reference memory domain.
ContributorsOrtiz, J. Bryce (Author) / Conrad, Cheryl D. (Thesis advisor) / Olive, M. Foster (Committee member) / Taylor, Sara (Committee member) / Bimonte-Nelson, Heather A. (Committee member) / Arizona State University (Publisher)
Created2013
156111-Thumbnail Image.png
Description
Chronic stress results in functional and structural changes to the hippocampus. Decades of research has led to insights into the mechanisms underlying the chronic stress-induced deficits in hippocampal-mediated cognition and reduction of dendritic complexity of hippocampal neurons. Recently, a considerable focus of chronic stress research has investigated the mechanisms behind

Chronic stress results in functional and structural changes to the hippocampus. Decades of research has led to insights into the mechanisms underlying the chronic stress-induced deficits in hippocampal-mediated cognition and reduction of dendritic complexity of hippocampal neurons. Recently, a considerable focus of chronic stress research has investigated the mechanisms behind the improvements in hippocampal mediated cognition when chronic stress ends and a post-stress rest period is given. Consequently, the goal of this dissertation is to uncover the mechanisms that allow for spatial ability to improve in the aftermath of chronic stress. In chapter 2, the protein brain derived neurotrophic factor (BDNF) was investigated as a mechanism that allows for spatial ability to show improvements following the end of chronic stress. It was found that decreasing the expression of BDNF in the hippocampus prevented spatial memory improvements following a post-stress rest period. Chapter 3 was performed to determine whether hippocampal CA3 apical dendritic complexity requires BDNF to show improvements following a post-stress rest period, and whether a receptor for BDNF, TrkB, mediates the improvements of spatial ability and dendritic complexity in a temporal manner, i.e. during the rest period only. These experiments showed that decreased hippocampal BDNF expression prevented improvements in dendritic complexity, and administration of a TrkB antagonist during the rest period also prevented the improvements in spatial ability and dendritic complexity. In chapter 4, the role of the GABAergic system on spatial ability following chronic stress and a post-stress rest period was investigated. Following chronic stress, it was found that male rats showed impairments on the acquisition phase of the RAWM and this correlated with limbic glutamic acid decarboxylase, a marker for GABA. In chapter 5, a transgenic mouse that expresses a permanent marker on all GABAergic interneurons was used to assess the effects of chronic stress and a post-stress rest period on hippocampal GABAergic neurons. While no changes were found on the total number of GABAergic interneurons, specific subtypes of GABAergic interneurons were affected by stressor manipulations. Collectively, these studies reveal some mechanisms behind the plasticity seen in the hippocampus in response to a post-stress rest period.
ContributorsOrtiz, J. Bryce (Author) / Conrad, Cheryl D. (Thesis advisor) / Newbern, Jason M. (Committee member) / Orchinik, Miles (Committee member) / Sanabria, Federico (Committee member) / Arizona State University (Publisher)
Created2018
Description
Females are highly vulnerable to the effects of methamphetamine, and understanding the mechanisms of this is critical to addressing methamphetamine use as a public health issue. Hormones may play a role in methamphetamine sensitivity; thus, the fluctuation of various endogenous peptides during the postpartum experience is of interest. This honors

Females are highly vulnerable to the effects of methamphetamine, and understanding the mechanisms of this is critical to addressing methamphetamine use as a public health issue. Hormones may play a role in methamphetamine sensitivity; thus, the fluctuation of various endogenous peptides during the postpartum experience is of interest. This honors thesis project explored the relation between anxiety-like behavior, as measured by activity in an open field, and conditioned place preference to methamphetamine in female versus male rats. The behavior of postpartum as well as virgin female rats was compared to that of male rats. There was not a significant difference between males and females in conditioned place preference to methamphetamine, yet females showed higher locomotor activity in response to the drug as well as increased anxiety-like behavior in open field testing as compared to males. Further study is vital to comprehending the complex mechanisms of sex differences in methamphetamine addiction.
ContributorsBaker, Allison Nicole (Author) / Olive, M. Foster (Thesis director) / Presson, Clark (Committee member) / Hansen, Whitney (Committee member) / Department of Psychology (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
136843-Thumbnail Image.png
Description
An introduction to neuroscientific thought aimed at an audience that is not educated in biology. Meant to be readable and easily understood by anyone with a high school education. The first section is completed in its entirety, with outlines for the proposed final sections to be completed over the next

An introduction to neuroscientific thought aimed at an audience that is not educated in biology. Meant to be readable and easily understood by anyone with a high school education. The first section is completed in its entirety, with outlines for the proposed final sections to be completed over the next few years.
ContributorsNelson, Nicholas Alan (Author) / Olive, M. Foster (Thesis director) / Brewer, Gene (Committee member) / Barrett, The Honors College (Contributor) / Department of Psychology (Contributor) / School of Life Sciences (Contributor) / School of Historical, Philosophical and Religious Studies (Contributor)
Created2014-05
133594-Thumbnail Image.png
Description
Traumatic brain injury is the leading cause of mortality and morbidity in children and adolescents. Adolescence is a critical time in development where the body and brain undergoes puberty, which not only includes reproductive maturation, but also adult social and cognitive development. Brain-injury-induced disruptions can cause secondary inflammation processes and

Traumatic brain injury is the leading cause of mortality and morbidity in children and adolescents. Adolescence is a critical time in development where the body and brain undergoes puberty, which not only includes reproductive maturation, but also adult social and cognitive development. Brain-injury-induced disruptions can cause secondary inflammation processes and as a result, pediatric TBI can lead to significant life-long and debilitating morbidities that continue long after initial injury. In this study, neuroinflammation following diffuse brain injury was explored in prepubertal and peripubertal rats using an adapted method of midline fluid percussion injury (mFPI) for juvenile rats to further understand the relationship between pediatric TBI and puberty disruption due to endocrine dysfunction. We expect the adapted mFPI model to be effective in producing diffuse, moderate brain injury in juvenile rats and hypothesize that pre-pubertal rats (PND35) will have increased neuroinflammation compared to peri-pubertal rats (PND17) and shams because of the potential neuroprotective nature of sex steroids. Male Sprague-Dawley rats (n=90) were subjected to either a diffuse midline fluid percussion injury (mFPI) or sham injury at post-natal day (PND) 17 (pre-puberty) or PND35 (peri-puberty). Animals were sacrificed at different time points defined as days post injury (DPI) including 1DPI, 7DPI and 25DPI to represent both acute and chronic time points, allowing for comparisons within groups (injury vs. sham) and across groups (PND17 vs PND35). Body weight of the rats was measured postoperatively at various time points throughout the study to follow recovery. Tissue was collected and subjected to Heamatoxylin and Eosin (H&E) stain to visualize histology and evaluate the application of diffuse mFPI to juvenile rats. In addition, tissue underwent immunohistochemical analysis using 3,3'-diaminobenzidine (DAB) to stain for ionized calcium binding proteins (Iba1) in order to assess injury-related neuroinflammation in the form of microglia activation. Diffuse brain injury using the mFPI model did not affect rat body weight or cause overt cell death, suggesting adaption of the adult mFPI model for juvenile rats is representative of moderate diffuse brain injury. In addition, diffuse TBI lead to morphological changes in microglia suggesting there is an increased inflammatory response following initial insult, which may directly contribute to improper activation of pubertal timing and progression in adolescent children affected. Since there is little literature on the full effects of puberty dysfunction following TBI in the pediatric population, there is a significant need to further assess this area in order to develop improved interventions and potential therapies for this affected population.
ContributorsNewbold, Kelsey Bevier (Author) / Newbern, Jason (Thesis director) / Rowe, Rachel (Committee member) / Ortiz, J. Bryce (Committee member) / School of Mathematical and Natural Sciences (Contributor) / Department of Psychology (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
137333-Thumbnail Image.png
Description
One of the nation's most pressing health related issues is that of healthy diet and proper nutrition. Because much research has shown that many Americans are in poor health or are at risk to become so due to poor diet and nutrition, understanding the psychological factors of a healthy diet

One of the nation's most pressing health related issues is that of healthy diet and proper nutrition. Because much research has shown that many Americans are in poor health or are at risk to become so due to poor diet and nutrition, understanding the psychological factors of a healthy diet or lack thereof is of the utmost importance. In order to understand the adoption and maintenance of health related behaviors, the link between intentions and behaviors must be evaluated. Of current health behavior models, the model utilized in this study was the Health Action Process Approach model (HAPA), which addressed this "intention-behavior gap." The HAPA model proposes that planning is the key mediator of the link between intentions and behavior. The current research was performed in two stages. The first stage evaluated the psychosocial constructs of the HAPA model, and their predictive utility for current diet and the second stage evaluated a planning-based intervention that aimed to increase proper nutrition in college-aged women. All HAPA constructs were found to be significantly correlated with one another, and planning was found to significantly and fully mediate the link between intention and healthy diet. The intervention did not lead to an increase in healthy diet relative to a standard-of-care control, although all participants across conditions reported increased intention, self-efficacy, and healthy diet from pre-test to follow-up.
ContributorsWells, Jordan Rebecca (Author) / Aiken, Leona (Thesis director) / Glenberg, Arthur (Committee member) / Hansen, Whitney (Committee member) / Barrett, The Honors College (Contributor) / Department of Psychology (Contributor)
Created2013-12
137433-Thumbnail Image.png
ContributorsChandler, N. Kayla (Author) / Neisewander, Janet (Thesis director) / Sanabria, Federico (Committee member) / Olive, M. Foster (Committee member) / Barrett, The Honors College (Contributor) / College of Liberal Arts and Sciences (Contributor)
Created2013-05
134581-Thumbnail Image.png
Description
Chronic stress often leads to cognitive deficits, especially within the spatial memory domain mediated by the hippocampus. When chronic stress ends and a no-stress period ensues (i.e., washout, WO), spatial ability improves, which can be better than non-stressed controls (CON). The WO period is often the same duration as the

Chronic stress often leads to cognitive deficits, especially within the spatial memory domain mediated by the hippocampus. When chronic stress ends and a no-stress period ensues (i.e., washout, WO), spatial ability improves, which can be better than non-stressed controls (CON). The WO period is often the same duration as the chronic stress paradigm. Given the potential benefit of a post-stress WO period on cognition, it is important to investigate whether this potential benefit of a post-stress WO period has long-lasting effects. In this project, chronic restraint (6hr/d/21d) in Sprague-Dawley rats was used, as it is the minimum duration necessary to observe spatial memory deficits. Two durations of post-stress WO were used following the end of chronic restraint, 3 weeks (STR-WO3) and 6 weeks (STR-WO6). Immediately after chronic stress (STR-IMM) or the WO periods, rats were tested on various cognitive tests. We corroborated past studies that chronic stress impaired spatial memory (STR-IMM vs CON). Interestingly, STR-WO3 and STR-WO6 failed to demonstrate improved spatial memory on a radial arm water maze task, performing similarly as STR-IMM. Performance outcomes were unlikely from differences in anxiety or motivation because rats from all conditions performed similarly on an open field task and on a simple object recognition paradigm, respectively. However, performance on object placement was unusual in that very few rats explored, suggesting some degree of anxiety or fear in all groups. One possible interpretation of the unusual results of the 3 week washout group may be attributed to the different spatial memory tasks used across studies or external factors from the study. Further exploration of these other factors led to the conclusion that they did not play a role and the STR-WO3 RAWM data were anomalous to other studies. This suggests that a washout period following chronic stress may not be fully understood.
ContributorsFlegenheimer, Aaron Embden (Author) / Conrad, Cheryl (Thesis director) / Bimonte-Nelson, Heather (Committee member) / Ortiz, J. Bryce (Committee member) / School of Life Sciences (Contributor) / School of Human Evolution and Social Change (Contributor) / Barrett, The Honors College (Contributor)
Created2017-05
134051-Thumbnail Image.png
Description
Nicotine addiction remains a prevalent public health issue, and the FDA has released a statement outlining the systematic reduction of nicotine to non-zero levels in the coming years. Current research has not yet established the effects of abrupt nicotine dose reduction on vulnerability to relapse, nor has abrupt nicotine dose

Nicotine addiction remains a prevalent public health issue, and the FDA has released a statement outlining the systematic reduction of nicotine to non-zero levels in the coming years. Current research has not yet established the effects of abrupt nicotine dose reduction on vulnerability to relapse, nor has abrupt nicotine dose reduction been evaluated in terms of behavioral economic characteristics of demand and elasticity been evaluated for reduced doses of nicotine. Using a rat model, we first evaluated the comparability of between- and within-session protocols for establishing characteristics of demand and elasticity for nicotine to shorten experimental timelines for this study and future studies. We then tested environmental enrichment and sex as factors of elasticity of demand for nicotine. Using a rat model of relapse to cues, we also examined the effects of nicotine dose-reduction on vulnerability to relapse. We found differences in maximum consumption and demand between the between- and within-session protocols, as well as sex differences in elasticity of demand on the within-session protocol where male demand was more elastic than female demand. Additionally, we found that enrichment significantly increased elasticity of demand for nicotine for both males and females. Finally, preliminary analyses revealed that nicotine dose reduction yields more inelastic demand and higher maximum consumption, and these outcomes predict increased time to extinction of the association between nicotine and contingent cues, and increased rates of relapse. These studies highlight the usefulness and validity of within-session protocols, and also illustrate the necessity for rigorous testing of forced dose reduction on nicotine vulnerability.
ContributorsCabrera-Brown, Gabriella Paula (Author) / Gipson-Reichardt, Cassandra (Thesis director) / Olive, M. Foster (Committee member) / Davis, Mary (Committee member) / Sanford School of Social and Family Dynamics (Contributor) / Department of Psychology (Contributor) / Barrett, The Honors College (Contributor)
Created2017-12