Matching Items (38)
152234-Thumbnail Image.png
Description
One of the main challenges in planetary robotics is to traverse the shortest path through a set of waypoints. The shortest distance between any two waypoints is a direct linear traversal. Often times, there are physical restrictions that prevent a rover form traversing straight to a waypoint. Thus, knowledge of

One of the main challenges in planetary robotics is to traverse the shortest path through a set of waypoints. The shortest distance between any two waypoints is a direct linear traversal. Often times, there are physical restrictions that prevent a rover form traversing straight to a waypoint. Thus, knowledge of the terrain is needed prior to traversal. The Digital Terrain Model (DTM) provides information about the terrain along with waypoints for the rover to traverse. However, traversing a set of waypoints linearly is burdensome, as the rovers would constantly need to modify their orientation as they successively approach waypoints. Although there are various solutions to this problem, this research paper proposes the smooth traversability of the rover using splines as a quick and easy implementation to traverse a set of waypoints. In addition, a rover was used to compare the smoothness of the linear traversal along with the spline interpolations. The data collected illustrated that spline traversals had a less rate of change in the velocity over time, indicating that the rover performed smoother than with linear paths.
ContributorsKamasamudram, Anurag (Author) / Saripalli, Srikanth (Thesis advisor) / Fainekos, Georgios (Thesis advisor) / Turaga, Pavan (Committee member) / Arizona State University (Publisher)
Created2013
Description
Multicore processors have proliferated in nearly all forms of computing, from servers, desktop, to smartphones. The primary reason for this large adoption of multicore processors is due to its ability to overcome the power-wall by providing higher performance at a lower power consumption rate. With multi-cores, there is increased need

Multicore processors have proliferated in nearly all forms of computing, from servers, desktop, to smartphones. The primary reason for this large adoption of multicore processors is due to its ability to overcome the power-wall by providing higher performance at a lower power consumption rate. With multi-cores, there is increased need for dynamic energy management (DEM), much more than for single-core processors, as DEM for multi-cores is no more a mechanism just to ensure that a processor is kept under specified temperature limits, but also a set of techniques that manage various processor controls like dynamic voltage and frequency scaling (DVFS), task migration, fan speed, etc. to achieve a stated objective. The objectives span a wide range from maximizing throughput, minimizing power consumption, reducing peak temperature, maximizing energy efficiency, maximizing processor reliability, and so on, along with much more wider constraints of temperature, power, timing, and reliability constraints. Thus DEM can be very complex and challenging to achieve. Since often times many DEMs operate together on a single processor, there is a need to unify various DEM techniques. This dissertation address such a need. In this work, a framework for DEM is proposed that provides a unifying processor model that includes processor power, thermal, timing, and reliability models, supports various DEM control mechanisms, many different objective functions along with equally diverse constraint specifications. Using the framework, a range of novel solutions is derived for instances of DEM problems, that include maximizing processor performance, energy efficiency, or minimizing power consumption, peak temperature under constraints of maximum temperature, memory reliability and task deadlines. Finally, a robust closed-loop controller to implement the above solutions on a real processor platform with a very low operational overhead is proposed. Along with the controller design, a model identification methodology for obtaining the required power and thermal models for the controller is also discussed. The controller is architecture independent and hence easily portable across many platforms. The controller has been successfully deployed on Intel Sandy Bridge processor and the use of the controller has increased the energy efficiency of the processor by over 30%
ContributorsHanumaiah, Vinay (Author) / Vrudhula, Sarma (Thesis advisor) / Chatha, Karamvir (Committee member) / Chakrabarti, Chaitali (Committee member) / Rodriguez, Armando (Committee member) / Askin, Ronald (Committee member) / Arizona State University (Publisher)
Created2013
152324-Thumbnail Image.png
Description
With robots being used extensively in various areas, a certain degree of robot autonomy has always been found desirable. In applications like planetary exploration, autonomous path planning and navigation are considered essential. But every now and then, a need to modify the robot's operation arises, a need for a human

With robots being used extensively in various areas, a certain degree of robot autonomy has always been found desirable. In applications like planetary exploration, autonomous path planning and navigation are considered essential. But every now and then, a need to modify the robot's operation arises, a need for a human to provide it some supervisory parameters that modify the degree of autonomy or allocate extra tasks to the robot. In this regard, this thesis presents an approach to include a provision to accept and incorporate such human inputs and modify the navigation functions of the robot accordingly. Concepts such as applying kinematical constraints while planning paths, traversing of unknown areas with an intent of maximizing field of view, performing complex tasks on command etc. have been examined and implemented. The approaches have been tested in Robot Operating System (ROS), using robots such as the iRobot Create, Personal Robotics (PR2) etc. Simulations and experimental demonstrations have proved that this approach is feasible for solving some of the existing problems and that it certainly can pave way to further research for enhancing functionality.
ContributorsVemprala, Sai Hemachandra (Author) / Saripalli, Srikanth (Thesis advisor) / Fainekos, Georgios (Committee member) / Turaga, Pavan (Committee member) / Arizona State University (Publisher)
Created2013
152292-Thumbnail Image.png
Description
A thorough understanding of Europa's geology through the synergy of science and technology, by combining geologic mapping with autonomous onboard processing methods, enhances the science potential of future outer solar system missions. Mapping outlines the current state of knowledge of Europa's surface and near sub-surface, indicates the prevalence of distinctive

A thorough understanding of Europa's geology through the synergy of science and technology, by combining geologic mapping with autonomous onboard processing methods, enhances the science potential of future outer solar system missions. Mapping outlines the current state of knowledge of Europa's surface and near sub-surface, indicates the prevalence of distinctive geologic features, and enables a uniform perspective of formation mechanisms responsible for generating those features. I have produced a global geologic map of Europa at 1:15 million scale and appraised formation scenarios with respect to conditions necessary to produce observed morphologies and variability of those conditions over Europa's visible geologic history. Mapping identifies areas of interest relevant for autonomous study; it serves as an index for change detection and classification and aids pre-encounter targeting. Therefore, determining the detectability of geophysical activity is essential. Activity is evident by the presence of volcanic plumes or outgassing, disrupted surface morphologies, or changes in morphology, color, temperature, or composition; these characteristics reflect important constraints on the interior dynamics and evolutions of planetary bodies. By adapting machine learning and data mining techniques to signatures of plumes, morphology, and spectra, I have successfully demonstrated autonomous rule-based response and detection, identification, and classification of known events and features on outer planetary bodies using the following methods: 1. Edge-detection, which identifies the planetary horizon and highlights features extending beyond the limb; 2. Spectral matching using a superpixel endmember detection algorithm that identifies mean spectral signatures; and 3. Scale invariant feature transforms combined with supervised classification, which examines brightness gradients throughout an image, highlights extreme gradient regions, and classifies those regions based on a manually selected library of features. I have demonstrated autonomous: detection of volcanic plumes or jets at Io, Enceladus, and several comets, correlation between spectral signatures and morphological appearances of Europa's individual tectonic features, detection of ≤94% of known transient events on multiple planetary bodies, and classification of similar geologic features. Applying these results to conditions expected for Europa enables a prediction of the potential for detection and recommendations for mission concepts to increase the science return and efficiency of future missions to observe Europa.
ContributorsBunte, Melissa K (Author) / Bell, Iii, James F. (Thesis advisor) / Williams, David A. (Committee member) / Saripalli, Srikanth (Committee member) / Clarke, Amanda B. (Committee member) / Reynolds, Stephen J. (Committee member) / Christensen, Phillip R. (Committee member) / Arizona State University (Publisher)
Created2013
152273-Thumbnail Image.png
Description
This study focuses on state estimation of nonlinear discrete time systems with constraints. Physical processes have inherent in them, constraints on inputs, outputs, states and disturbances. These constraints can provide additional information to the estimator in estimating states from the measured output. Recursive filters such as Kalman Filters or Extended

This study focuses on state estimation of nonlinear discrete time systems with constraints. Physical processes have inherent in them, constraints on inputs, outputs, states and disturbances. These constraints can provide additional information to the estimator in estimating states from the measured output. Recursive filters such as Kalman Filters or Extended Kalman Filters are commonly used in state estimation; however, they do not allow inclusion of constraints in their formulation. On the other hand, computational complexity of full information estimation (using all measurements) grows with iteration and becomes intractable. One way of formulating the recursive state estimation problem with constraints is the Moving Horizon Estimation (MHE) approximation. Estimates of states are calculated from the solution of a constrained optimization problem of fixed size. Detailed formulation of this strategy is studied and properties of this estimation algorithm are discussed in this work. The problem with the MHE formulation is solving an optimization problem in each iteration which is computationally intensive. State estimation with constraints can be formulated as Extended Kalman Filter (EKF) with a projection applied to estimates. The states are estimated from the measurements using standard Extended Kalman Filter (EKF) algorithm and the estimated states are projected on to a constrained set. Detailed formulation of this estimation strategy is studied and the properties associated with this algorithm are discussed. Both these state estimation strategies (MHE and EKF with projection) are tested with examples from the literature. The average estimation time and the sum of square estimation error are used to compare performance of these estimators. Results of the case studies are analyzed and trade-offs are discussed.
ContributorsJoshi, Rakesh (Author) / Tsakalis, Konstantinos (Thesis advisor) / Rodriguez, Armando (Committee member) / Si, Jennie (Committee member) / Arizona State University (Publisher)
Created2013
152500-Thumbnail Image.png
Description
As networks are playing an increasingly prominent role in different aspects of our lives, there is a growing awareness that improving their performance is of significant importance. In order to enhance performance of networks, it is essential that scarce networking resources be allocated smartly to match the continuously changing network

As networks are playing an increasingly prominent role in different aspects of our lives, there is a growing awareness that improving their performance is of significant importance. In order to enhance performance of networks, it is essential that scarce networking resources be allocated smartly to match the continuously changing network environment. This dissertation focuses on two different kinds of networks - communication and social, and studies resource allocation problems in these networks. The study on communication networks is further divided into different networking technologies - wired and wireless, optical and mobile, airborne and terrestrial. Since nodes in an airborne network (AN) are heterogeneous and mobile, the design of a reliable and robust AN is highly complex. The dissertation studies connectivity and fault-tolerance issues in ANs and proposes algorithms to compute the critical transmission range in fault free, faulty and delay tolerant scenarios. Just as in the case of ANs, power optimization and fault tolerance are important issues in wireless sensor networks (WSN). In a WSN, a tree structure is often used to deliver sensor data to a sink node. In a tree, failure of a node may disconnect the tree. The dissertation investigates the problem of enhancing the fault tolerance capability of data gathering trees in WSN. The advent of OFDM technology provides an opportunity for efficient resource utilization in optical networks and also introduces a set of novel problems, such as routing and spectrum allocation (RSA) problem. This dissertation proves that RSA problem is NP-complete even when the network topology is a chain, and proposes approximation algorithms. In the domain of social networks, the focus of this dissertation is study of influence propagation in presence of active adversaries. In a social network multiple vendors may attempt to influence the nodes in a competitive fashion. This dissertation investigates the scenario where the first vendor has already chosen a set of nodes and the second vendor, with the knowledge of the choice of the first, attempts to identify a smallest set of nodes so that after the influence propagation, the second vendor's market share is larger than the first.
ContributorsShirazipourazad, Shahrzad (Author) / Sen, Arunabha (Committee member) / Xue, Guoliang (Committee member) / Richa, Andrea (Committee member) / Saripalli, Srikanth (Committee member) / Arizona State University (Publisher)
Created2014
152326-Thumbnail Image.png
Description
Solar power generation is the most promising technology to transfer energy consumption reliance from fossil fuel to renewable sources. Concentrated solar power generation is a method to concentrate the sunlight from a bigger area to a smaller area. The collected sunlight is converted more efficiently through two types of technologies:

Solar power generation is the most promising technology to transfer energy consumption reliance from fossil fuel to renewable sources. Concentrated solar power generation is a method to concentrate the sunlight from a bigger area to a smaller area. The collected sunlight is converted more efficiently through two types of technologies: concentrated solar photovoltaics (CSPV) and concentrated solar thermal power (CSTP) generation. In this thesis, these two technologies were evaluated in terms of system construction, performance characteristics, design considerations, cost benefit analysis and their field experience. The two concentrated solar power generation systems were implemented with similar solar concentrators and solar tracking systems but with different energy collecting and conversion components: the CSPV system uses high efficiency multi-junction solar cell modules, while the CSTP system uses a boiler -turbine-generator setup. The performances are calibrated via the experiments and evaluation analysis.
ContributorsJin, Zhilei (Author) / Hui, Yu (Thesis advisor) / Ayyanar, Raja (Committee member) / Rodriguez, Armando (Committee member) / Arizona State University (Publisher)
Created2013
152806-Thumbnail Image.png
Description
Impact cratering has played a crucial role in the surface development of the inner planets. Constraining the timing of this bombardment history is important in understanding the origins of life and our planet's evolution. Plate tectonics, active volcanism, and vegetation hinder the preservation and identification of existing impact craters on

Impact cratering has played a crucial role in the surface development of the inner planets. Constraining the timing of this bombardment history is important in understanding the origins of life and our planet's evolution. Plate tectonics, active volcanism, and vegetation hinder the preservation and identification of existing impact craters on Earth. Providing age constraints on these elusive structures will provide a deeper understanding of our planet's development. To do this, (U-Th)/He thermochronology and in situ 40Ar/39Ar laser microprobe geochronology are used to provide ages for the Haughton and Mistastin Lake impact structures, both located in northern Canada. While terrestrial impact structures provide accessible laboratories for deciphering Earth's impact history, the ultimate goal for understanding the history of the reachable inner Solar System is to acquire robust, quantitative age constraints for the large lunar impact basins. The oldest of these is the South Pole-Aitken basin (SPA), located on the lunar farside. While it is known that this basin is stratigraphically the oldest on the Moon, its absolute age has yet to be determined. Several reports released in the last decade have highlighted sampling and dating SPA as a top priority for inner Solar System exploration. This is no easy task as the SPA structure has been modified by four billion subsequent years of impact events. Informed by studies at Mistastin - which has target lithologies analogous to those at SPA - sampling strategies are discussed that are designed to optimize the probability of a high science return with regard to robust geochronology of the SPA basin. Planetary surface missions, like one designed to explore and sample SPA, require the integration of engineering constraints with scientific goals and traverse planning. The inclusion of in situ geochemical technology, such as the handheld X-ray fluorescence spectrometer (hXRF), into these missions will provide human crews with the ability to gain a clearer contextual picture of the landing site and aid with sample high-grading. The introduction of hXRF technology could be of crucial importance in identifying SPA-derived melts. In addition to enhancing planetary field geology, hXRF deployment could also have real implications for enriching terrestrial field geology.
ContributorsYoung, Kelsey (Author) / Hodges, Kip V (Thesis advisor) / Asphaug, Erik I (Committee member) / Saripalli, Srikanth (Committee member) / Christensen, Philip R. (Committee member) / Van Soest, Matthijs C (Committee member) / Arizona State University (Publisher)
Created2014
152732-Thumbnail Image.png
Description
The presented work in this report is about Real time Estimation of wind and analyzing current wind correction algorithm in commercial off the shelf Autopilot board. The open source ArduPilot Mega 2.5 (APM 2.5) board manufactured by 3D Robotics is used. Currently there is lot of development being done in

The presented work in this report is about Real time Estimation of wind and analyzing current wind correction algorithm in commercial off the shelf Autopilot board. The open source ArduPilot Mega 2.5 (APM 2.5) board manufactured by 3D Robotics is used. Currently there is lot of development being done in the field of Unmanned Aerial Systems (UAVs), various aerial platforms and corresponding; autonomous systems for them. This technology has advanced to such a stage that UAVs can be used for specific designed missions and deployed with reliability. But in some areas like missions requiring high maneuverability with greater efficiency is still under research area. This would help in increasing reliability and augmenting range of UAVs significantly. One of the problems addressed through this thesis work is, current autopilot systems have algorithm that handles wind by attitude correction with appropriate Crab angle. But the real time wind vector (direction) and its calculated velocity is based on geometrical and algebraic transformation between ground speed and air speed vectors. This method of wind estimation and prediction, many a times leads to inaccuracy in attitude correction. The same has been proved in the following report with simulation and actual field testing. In later part, new ways to tackle while flying windy conditions have been proposed.
ContributorsBiradar, Anandrao Shesherao (Author) / Saripalli, Srikanth (Thesis advisor) / Berman, Spring (Thesis advisor) / Thanga, Jekan (Committee member) / Arizona State University (Publisher)
Created2014
152741-Thumbnail Image.png
Description
This project is to develop a new method to generate GPS waypoints for better terrain mapping efficiency using an UAV. To create a map of a desired terrain, an UAV is used to capture images at particular GPS locations. These images are then stitched together to form a complete ma

This project is to develop a new method to generate GPS waypoints for better terrain mapping efficiency using an UAV. To create a map of a desired terrain, an UAV is used to capture images at particular GPS locations. These images are then stitched together to form a complete map of the terrain. To generate a good map using image stitching, the images are desired to have a certain percentage of overlap between them. In high windy condition, an UAV may not capture image at desired GPS location, which in turn interferes with the desired percentage of overlap between images; both frontal and sideways; thus causing discrepancies while stitching the images together. The information about the exact GPS locations at which the images are captured can be found on the flight logs that are stored in the Ground Control Station and the Auto pilot board. The objective is to look at the flight logs, predict the waypoints at which the UAV might have swayed from the desired flight path. If there are locations where flight swayed from intended path, the code should generate a new set of waypoints for a correction flight. This will save the time required for stitching the images together, thus making the whole process faster and more efficient.
ContributorsGhadage, Prasannakumar Prakashrao (Author) / Saripalli, Srikanth (Thesis advisor) / Berman, Spring M (Thesis advisor) / Thangavelautham, Jekanthan (Committee member) / Arizona State University (Publisher)
Created2014