Matching Items (23)
Filtering by

Clear all filters

149679-Thumbnail Image.png
Description
Though it is a widespread adaptation in humans and many other animals, parental care comes in a variety of forms and its subtle physiological costs, benefits, and tradeoffs related to offspring are often unknown. Thus, I studied the hydric, respiratory, thermal, and fitness dynamics of maternal egg-brooding behavior in Children's

Though it is a widespread adaptation in humans and many other animals, parental care comes in a variety of forms and its subtle physiological costs, benefits, and tradeoffs related to offspring are often unknown. Thus, I studied the hydric, respiratory, thermal, and fitness dynamics of maternal egg-brooding behavior in Children's pythons (Antaresia childreni). I demonstrated that tight coiling detrimentally creates a hypoxic developmental environment that is alleviated by periodic postural adjustments. Alternatively, maternal postural adjustments detrimentally elevate rates of egg water loss relative to tight coiling. Despite ventilating postural adjustments, the developmental environment becomes increasingly hypoxic near the end of incubation, which reduces embryonic metabolism. I further demonstrated that brooding-induced hypoxia detrimentally affects offspring size, performance, locomotion, and behavior. Thus, parental care in A. childreni comes at a cost to offspring due to intra-offspring tradeoffs (i.e., those that reflect competing offspring needs, such as water balance and respiration). Next, I showed that, despite being unable to intrinsically produce body heat, A. childreni adjust egg-brooding behavior in response to shifts in nest temperature, which enhances egg temperature (e.g., reduced tight coiling during nest warming facilitated beneficial heat transfer to eggs). Last, I demonstrated that A. childreni adaptively adjust their egg-brooding behaviors due to an interaction between nest temperature and humidity. Specifically, females' behavioral response to nest warming was eliminated during low nest humidity. In combination with other studies, these results show that female pythons sense environmental temperature and humidity and utilize this information at multiple time points (i.e., during gravidity [egg bearing], at oviposition [egg laying], and during egg brooding) to enhance the developmental environment of their offspring. This research demonstrates that maternal behaviors that are simple and subtle, yet easily quantifiable, can balance several critical developmental variables (i.e., thermoregulation, water balance, and respiration).
ContributorsStahlschmidt, Zachary R (Author) / DeNardo, Dale F (Thesis advisor) / Harrison, Jon (Committee member) / McGraw, Kevin (Committee member) / Rutowski, Ronald (Committee member) / Walsberg, Glenn (Committee member) / Arizona State University (Publisher)
Created2011
151342-Thumbnail Image.png
Description
Human-induced rapid environmental change (HIREC) influences nearly all of Earth's ecosystems through processes such as urbanization. Previous studies have found that urbanization influences biodiversity patterns, often yielding an increase in the abundance of a few urban-adapted taxa at the expense of native species diversity. The western black widow spider, Latrodectus

Human-induced rapid environmental change (HIREC) influences nearly all of Earth's ecosystems through processes such as urbanization. Previous studies have found that urbanization influences biodiversity patterns, often yielding an increase in the abundance of a few urban-adapted taxa at the expense of native species diversity. The western black widow spider, Latrodectus hesperus, is a medically-important pest species that often forms dense urban subpopulations (i.e., infestations) relative to the low-density subpopulations found throughout undisturbed, desert habitat. Here, I employ field and laboratory studies to examine the population ecology and stoichiometry of this urban pest to increase our understanding of the mechanisms underlying its success. The population ecology of ten black widow subpopulations spread across metropolitan Phoenix, AZ was examined during the peak breeding season (June-August). This study revealed that arthropod prey abundance, female mass and population density of females showed significant spatial variation across the ten subpopulations. Additionally, prey abundance and foraging success, measured as the number of carcasses found in webs, were a strong determinant of female mass and population density within each subpopulation. To test the mechanisms that drive black widow infestations, I used ecological stoichiometry to examine the nutrient (nitrogen and phosphorus) composition of spiders and arthropod prey from urban habitat, desert habitat and a laboratory diet regime. These studies revealed that (1) spiders are more nutrient rich than cricket prey in the field, (2) spider subpopulations exhibit significant spatial variation in their nitrogen composition, (3) nutrient composition of urban spider subpopulations does not differ significantly from Sonoran desert subpopulations, (4) laboratory-reared spiders fed a diet of only laboratory-reared crickets are more nitrogen and phosphorus limited than field-captured spiders, and (5) cannibalism by laboratory-reared spiders alleviated phosphorus limitation, but not nitrogen limitation, when compared to field-captured spiders. This work highlights the need to examine the population ecology of species relationships, such as predator-prey dynamics, to fully understand the fecundity and population growth of urban pest species. Moreover, the integration of population ecology and stoichiometry illustrates the need to address mechanisms like nutrient limitation that may explain why urban pest populations thrive and native species diversity suffers following HIREC.
ContributorsTrubl, Patricia (Author) / Johnson, James C. (Thesis advisor) / Rutowski, Ronald (Thesis advisor) / McGraw, Kevin (Committee member) / Arizona State University (Publisher)
Created2012
151122-Thumbnail Image.png
Description
Parental care provides many benefits to offspring. One widely realized benefit is enhanced regulation of offspring's thermal environment. The developmental thermal environment during development can be optimized behaviorally through nest site selection and brooding, and it can be further enhanced by physiological heat production. In fact, enhancement of the developmental

Parental care provides many benefits to offspring. One widely realized benefit is enhanced regulation of offspring's thermal environment. The developmental thermal environment during development can be optimized behaviorally through nest site selection and brooding, and it can be further enhanced by physiological heat production. In fact, enhancement of the developmental thermal environment has been proposed as the initial driving force for the evolution of endothermy in bird and mammals. I used pythons (Squamata: Pythonidae) to expand existing knowledge of behavioral and physiological parental tactics used to regulate offspring thermal environment. I first demonstrated that brooding behavior in the Children's python (Antaresia childreni) is largely driven by internal mechanisms, similar to solitary birds, suggesting that the early evolution of the parent-offspring association was probably hormonally driven. Two species of python are known to be facultatively thermogenic (i.e., are endothermic during reproduction). I expand current knowledge of thermogenesis in Burmese pythons (Python molurus) by demonstrating that females use their own body temperature to modulate thermogenesis. Although pythons are commonly cited as thermogenic, the actual extent of thermogenesis within the family Pythonidae is unknown. Thus, I assessed the thermogenic capability of five previously unstudied species of python to aid in understanding phylogenetic, morphological, and distributional influences on thermogenesis in pythons. Results suggest that facultative thermogenesis is likely rare among pythons. To understand why it is rare, I used an artificial model to demonstrate that energetic costs to the female likely outweigh thermal benefits to the clutch in species that do not inhabit cooler latitudes or lack large energy reserves. In combination with other studies, these results show that facultative thermogenesis during brooding in pythons likely requires particular ecological and physiological factors for its evolution.
ContributorsBrashears, Jake (Author) / DeNardo, Dale (Thesis advisor) / Harrison, Jon (Committee member) / Deviche, Pierre (Committee member) / McGraw, Kevin (Committee member) / Smith, Andrew (Committee member) / Arizona State University (Publisher)
Created2012
171757-Thumbnail Image.png
Description
Meditation app usage is associated with decreases in stress, anxiety, and depression symptoms. Many meditation app subscribers, however, quickly abandon or reduce their app usage. This dissertation presents three manuscripts which 1) determined the behavioral, demographic, and socioeconomic factors associated with the abandonment of a meditation app, Calm, during the

Meditation app usage is associated with decreases in stress, anxiety, and depression symptoms. Many meditation app subscribers, however, quickly abandon or reduce their app usage. This dissertation presents three manuscripts which 1) determined the behavioral, demographic, and socioeconomic factors associated with the abandonment of a meditation app, Calm, during the COVID-19 pandemic, 2) determined which participant characteristics predicted meditation app usage in the first eight weeks after subscribing, and 3) determined if changes in stress, anxiety, and depressive symptoms from baseline to Week 8 predicted meditation app usage from Weeks 8-16. In Manuscript 1, a survey was distributed to Calm subscribers in March 2020 that assessed meditation app behavior and meditation habit strength, and demographic information. Cox proportional hazards regression models were estimated to assess time to app abandonment. In Manuscript 2, new Calm subscribers completed a baseline survey on participants’ demographic and baseline mental health information and app usage data were collected over 8 weeks. In Manuscript 3, new Calm subscribers completed a baseline and Week 8 survey on demographic and mental health information. App usage data were collected over 16 weeks. Regression models were used to assess app usage for Manuscripts 2 and 3. Findings from Manuscript 1 suggest meditating after an existing routine decreased risk of app abandonment for pre-pandemic subscribers and for pandemic subscribers. Additionally, meditating “whenever I can” decreased risk of abandonment among pandemic subscribers. No behavioral factors were significant predictors of app abandonment among the long-term subscribers. Findings from Manuscript 2 suggest men had more days of meditation than women. Mental health diagnosis increased average daily meditation minutes. Intrinsic motivation for meditation increased the likelihood of completing any meditation session, more days with meditation sessions, and more average daily meditation minutes. Findings from Manuscript 3 suggest improvements in stress increased average daily meditation minutes. Improvements in depressive symptoms decreased daily meditation minutes. Evidence from this three-manuscript dissertation suggests meditation cue, time of day, motivation, symptom changes, and demographic and socioeconomic variables may be used to predict meditation app usage.
ContributorsSullivan, Mariah (Author) / Stecher, Chad (Thesis advisor) / Huberty, Jennifer (Committee member) / Buman, Matthew (Committee member) / Larkey, Linda (Committee member) / Chung, Yunro (Committee member) / Arizona State University (Publisher)
Created2022
171501-Thumbnail Image.png
Description
Young adult collegiate women, particularly students with adverse childhood experiences (ACEs) and who have experienced intimate partner violence (IPV) victimization, report a myriad of adverse mental health and academic difficulties. Practicing yoga has demonstrated promising findings among adults as a healing modality in the aftermath of interpersonal violence victimization and

Young adult collegiate women, particularly students with adverse childhood experiences (ACEs) and who have experienced intimate partner violence (IPV) victimization, report a myriad of adverse mental health and academic difficulties. Practicing yoga has demonstrated promising findings among adults as a healing modality in the aftermath of interpersonal violence victimization and traumatization. Less known are the associations between collegiate women’s yoga participation and their mental health, body connection, and academic well-being examined through a yoga feminist- trauma conceptual framework. Among young adult collegiate women, this study examined (1) associations amongst socio-demographics, mental health service use, IPV types, and yoga participation (2) the strength and direction of associations on measures of ACEs, mental health, body connection, and academic well-being, (3) whether yoga participation predicted students’ mental health, body connection, and academic well-being after controlling for confounding variables, including ACEs and IPV victimization, and (4) whether socio-demographics, mental health service use, ACEs, and IPV types predicted yoga participation. This study was observational, cross-sectional, and gathered self-report quantitative data. Eligible participants were current collegiate women enrolled at an urban, public university in the southwestern United States who were 18 to 24 years of age. The main sub-sample (n = 93) included students who were ever in an intimate relationship and practiced yoga within the past year. IRB approval was obtained. Findings demonstrated that yoga participation was not a significant predictor of students’ mental health, body connection, or academic well-being. Socio-demographics, mental health service use, ACEs, and IPV did not predict yoga participation. However, women with greater ACEs fared worse on measures of mental health (i.e., depression and post-traumatic stress disorder symptoms), and women with experiences of IPV harassment reported greater post-traumatic stress disorder symptoms. Further, employed women reported fewer depression symptoms and were less likely to experience emotional IPV. Lastly, students with greater body connection (more awareness) fared better academically. This research supports prior literature on the adverse mental health outcomes among young adult collegiate women with histories of interpersonal violence. Further examination is warranted into employment and body connection, particularly related to yoga, as protective factors of students' health, safety, and academic well-being.
ContributorsKappas Mazzio, Andrea Alexa (Author) / Messing, Jill T (Thesis advisor) / Mendoza, Natasha (Committee member) / Huberty, Jennifer (Committee member) / Arizona State University (Publisher)
Created2022
156759-Thumbnail Image.png
Description
College students experience a considerable amount of stress. Unmanaged stress is associated with poor academic performance, health risk behaviors (i.e., inadequate sleep and physical activity, alcohol consumption, poor dietary behaviors), and poor mental health. Coping with stress has become a priority among universities. The most tested stress-related programs to date

College students experience a considerable amount of stress. Unmanaged stress is associated with poor academic performance, health risk behaviors (i.e., inadequate sleep and physical activity, alcohol consumption, poor dietary behaviors), and poor mental health. Coping with stress has become a priority among universities. The most tested stress-related programs to date have been mindfulness-based and face-to-face. These programs demonstrated significant improvements in stress, mindfulness, and self-compassion among college students. However, they may be burdensome to students as studies report low attendance and low compliance due to class conflicts or not enough time. Few interventions have used more advanced technologies (i.e., mobile apps) as a mode of delivery. The purpose of this study is to report adherence to a consumer-based mindfulness meditation mobile application (i.e., Calm) and test its effects on stress, mindfulness, and self-compassion in college students. We will also explore what the relationship is between mindfulness and health behaviors.

College students were recruited using fliers on college campus and social media. Eligible participants were randomized to one of two groups: (1) Intervention - meditate using Calm, 10 min/day for eight weeks and (2) Control – no participation in mindfulness practices (received the Calm application after 12-weeks). Stress, mindfulness, and self-compassion and health behaviors (i.e., sleep disturbance, alcohol consumption, physical activity, fruit and vegetable consumption) were measured using self-report. Outcomes were measured at baseline and week eight.

Of the 109 students that enrolled in the study, 41 intervention and 47 control participants were included in analysis. Weekly meditation participation averaged 38 minutes with 54% of participants completing at least half (i.e., 30 minutes) of meditations. Significant changes between groups were found in stress, mindfulness, and self-compassion (all P<0.001) in favor of the intervention group. A significant negative association (p<.001) was found between total mindfulness and sleep disturbance.

An eight-week consumer-based mindfulness meditation mobile application (i.e., Calm) was effective in reducing stress, improving mindfulness and self-compassion among undergraduate college students. Mobile applications may be a feasible, effective, and less burdensome way to reduce stress in college students.
ContributorsGlissmann, Christine (Author) / Huberty, Jennifer (Thesis advisor) / Sebren, Ann (Committee member) / Larkey, Linda (Committee member) / Lee, Chong (Committee member) / Arizona State University (Publisher)
Created2018
156767-Thumbnail Image.png
Description
Reproduction is energetically costly and seasonal breeding has evolved to capitalize on predictable increases in food availability. The synchronization of breeding with periods of peak food availability is especially important for small birds, most of which do not store an extensive amount of energy. The annual change in photoperiod is

Reproduction is energetically costly and seasonal breeding has evolved to capitalize on predictable increases in food availability. The synchronization of breeding with periods of peak food availability is especially important for small birds, most of which do not store an extensive amount of energy. The annual change in photoperiod is the primary environmental cue regulating reproductive development, but must be integrated with supplementary cues relating to local energetic conditions. Photoperiodic regulation of the reproductive neuroendocrine system is well described in seasonally breeding birds, but the mechanisms that these animals use to integrate supplementary cues remain unclear. I hypothesized that (a) environmental cues that negatively affect energy balance inhibit reproductive development by acting at multiple levels along the reproductive endocrine axis including the hypothalamus (b) that the availability of metabolic fuels conveys alterations in energy balance to the reproductive system. I investigated these hypotheses in male house finches, Haemorhous mexicanus, caught in the wild and brought into captivity. I first experimentally reduced body condition through food restriction and found that gonadal development and function are inhibited and these changes are associated with changes in hypothalamic gonadotropin-releasing hormone (GnRH). I then investigated this neuroendocrine integration and found that finches maintain reproductive flexibility through modifying the release of accumulated GnRH stores in response to energetic conditions. Lastly, I investigated the role of metabolic fuels in coordinating reproductive responses under two different models of negative energy balance, decreased energy intake (food restriction) and increased energy expenditure (high temperatures). Exposure to high temperatures lowered body condition and reduced food intake. Reproductive development was inhibited under both energy challenges, and occurred with decreased gonadal gene expression of enzymes involved in steroid synthesis. Minor changes in fuel utilization occurred under food restriction but not high temperatures. My results support the hypothesis that negative energy balance inhibits reproductive development through multilevel effects on the hypothalamus and gonads. These studies are among the first to demonstrate a negative effect of high temperatures on reproductive development in a wild bird. Overall, the above findings provide important foundations for investigations into adaptive responses of breeding in energetically variable environments.
ContributorsValle, Shelley (Author) / Deviche, Pierre (Thesis advisor) / McGraw, Kevin (Committee member) / Orchinik, Miles (Committee member) / Propper, Catherine (Committee member) / Sweazea, Karen (Committee member) / Arizona State University (Publisher)
Created2018
154031-Thumbnail Image.png
Description
Background: Although childhood engagement in physical activity has received growing attention, most children still do not meet the recommended daily 60 minutes of moderate to vigorous physical activity [MVPA]. Children of ethnic minorities are less likely to meet the guidelines. Interventions have been implemented in various settings to increase child

Background: Although childhood engagement in physical activity has received growing attention, most children still do not meet the recommended daily 60 minutes of moderate to vigorous physical activity [MVPA]. Children of ethnic minorities are less likely to meet the guidelines. Interventions have been implemented in various settings to increase child physical activity levels, yet these efforts have not yielded consistent results. The purpose of this study was to assess the preliminary effects of a community-based intervention on light physical activity and MVPA among 6-11 year old children. Methods: The present study was part of a larger study called Athletes for Life [AFL], a family-based, nutrition-education and physical activity intervention. The present study focused on physical activity data from the first completed cohort of participants (n=29). This study was a randomized control trial in which participating children were randomized into a control (n=14) or intervention (n=15) group. Participants wore accelerometers at two time points. Intervention strategies were incorporated to increase child habitual physical activity. Analyses of covariance were performed to test for post 12-week differences between both groups on the average minutes of light physical activity and MVPA minutes per day.

Results: The accelerometer data demonstrated no significant difference in light physical activity or MVPA mean minutes per day between the groups. Few children reported engaging in activities sufficient for meeting the physical activity guidelines outside the AFL program. Of the 119 total distributed child physical activity tracker sheets (7 per family), 55 were returned. Of the 55 returned physical activity tracker sheets, parents reported engaging in physical activity with their children only 7 times outside of the program over seven weeks.

Conclusion: The combined intervention strategies implemented throughout the 12-week study did not appear to be effective at increasing habitual mean minutes per day spent engaging in light and MVPA among children beyond the directed program. Methodological limitations and low adherence to intervention strategies may partially explain these findings. Further research is needed to test successful strategies within community programs to increase habitual light physical activity and MVPA among 6-11 year old children.
ContributorsQuezada, Blanca (Author) / Crespo, Noe (Thesis advisor) / Huberty, Jennifer (Committee member) / Vega-Lopez, Sonia (Committee member) / Arizona State University (Publisher)
Created2015
154916-Thumbnail Image.png
Description
Why do many animals possess multiple classes of photoreceptors that vary in the wavelengths of light to which they are sensitive? Multiple spectral photoreceptor classes are a requirement for true color vision. However, animals may have unconventional vision, in which multiple spectral channels broaden the range of wavelengths that can

Why do many animals possess multiple classes of photoreceptors that vary in the wavelengths of light to which they are sensitive? Multiple spectral photoreceptor classes are a requirement for true color vision. However, animals may have unconventional vision, in which multiple spectral channels broaden the range of wavelengths that can be detected, or in which they use only a subset of receptors for specific behaviors. Branchiopod crustaceans are of interest for the study of unconventional color vision because they express multiple visual pigments in their compound eyes, have a simple repertoire of visually guided behavior, inhabit unique and highly variable light environments, and possess secondary neural simplifications. I first tested the behavioral responses of two representative species of branchiopods from separate orders, Streptocephalus mackini Anostracans (fairy shrimp), and Triops longicaudatus Notostracans (tadpole shrimp). I found that they maintain vertical position in the water column over a broad range of intensities and wavelengths, and respond behaviorally even at intensities below those of starlight. Accordingly, light intensities of their habitats at shallow depths tend to be dimmer than terrestrial habitats under starlight. Using models of how their compound eyes and the first neuropil of their optic lobe process visual cues, I infer that both orders of branchiopods use spatial summation from multiple compound eye ommatidia to respond at low intensities. Then, to understand if branchiopods use unconventional vision to guide these behaviors, I took electroretinographic recordings (ERGs) from their compound eyes and used models of spectral absorptance for a multimodel selection approach to make inferences about the number of photoreceptor classes in their eyes. I infer that both species have four spectral classes of photoreceptors that contribute to their ERGs, suggesting unconventional vision guides the described behavior. I extended the same modeling approach to other organisms, finding that the model inferences align with the empirically determined number of photoreceptor classes for this diverse set of organisms. This dissertation expands the conceptual framework of color vision research, indicating unconventional vision is more widespread than previously considered, and explains why some organisms have more spectral classes than would be expected from their behavioral repertoire.
ContributorsLessios, Nicolas (Author) / Rutowski, Ronald L (Thesis advisor) / Cohen, Jonathan H (Thesis advisor) / Harrison, John (Committee member) / Neuer, Susanne (Committee member) / McGraw, Kevin (Committee member) / Arizona State University (Publisher)
Created2016
152461-Thumbnail Image.png
Description
Foraging has complex effects on whole-organism homeostasis, and there is considerable evidence that foraging behavior is influenced by both environmental factors (e.g., food availability, predation risk) and the physiological condition of an organism. The optimization of foraging behavior to balance costs and benefits is termed state-dependent foraging (SDF) while behavior

Foraging has complex effects on whole-organism homeostasis, and there is considerable evidence that foraging behavior is influenced by both environmental factors (e.g., food availability, predation risk) and the physiological condition of an organism. The optimization of foraging behavior to balance costs and benefits is termed state-dependent foraging (SDF) while behavior that seeks to protect assets of fitness is termed the asset protection principle (APP). A majority of studies examining SDF have focused on the role that energy balance has on the foraging of organisms with high metabolism and high energy demands ("high-energy systems" such as endotherms). In contrast, limited work has examined whether species with low energy use ("low-energy systems" such as vertebrate ectotherms) use an SDF strategy. Additionally, there is a paucity of evidence demonstrating how physiological and environmental factors other than energy balance influence foraging behavior (e.g. hydration state and free-standing water availability). Given these gaps in our understanding of SDF behavior and the APP, I examined the state-dependency and consequences of foraging in a low-energy system occupying a resource-limited environment - the Gila monster (Heloderma suspectum, Cope 1869). In contrast to what has been observed in a wide variety of taxa, I found that Gila monsters do not use a SDF strategy to manage their energy reserves and that Gila monsters do not defend their energetic assets. However, hydration state and free-standing water availability do affect foraging behavior of Gila monsters. Additionally, as Gila monsters become increasingly dehydrated, they reduce activity to defend hydration state. The SDF behavior of Gila monsters appears to be largely driven by the fact that Gila monsters must separately satisfy energy and water demands with food and free-standing water, respectively, in conjunction with the timescale within which Gila monsters balance their energy and water budgets (supra-annually versus annually, respectively). Given these findings, the impact of anticipated changes in temperature and rainfall patterns in the Sonoran Desert are most likely going to pose their greatest risks to Gila monsters through the direct and indirect effects on water balance.
ContributorsWright, Christian (Author) / Denardo, Dale F. (Thesis advisor) / Harrison, Jon (Committee member) / McGraw, Kevin (Committee member) / Sullivan, Brian (Committee member) / Wolf, Blair (Committee member) / Arizona State University (Publisher)
Created2014