Matching Items (131)
Filtering by

Clear all filters

135905-Thumbnail Image.png
Description
This study was conducted to observe the effects of vitamin C supplementation upon the expression of sICAM-1 in asthmatic subject. Two groups were created, each with a sample size of 4 subjects. One group was the vitamin C group (VC) and the other was the placebo group (PL). The study

This study was conducted to observe the effects of vitamin C supplementation upon the expression of sICAM-1 in asthmatic subject. Two groups were created, each with a sample size of 4 subjects. One group was the vitamin C group (VC) and the other was the placebo group (PL). The study was analyzed through observing concentrations of biomolecules present within samples of blood plasma and nasal lavages. These included vitamin C, sICAM-1 expression, and histamine. The following P-values calculated from the data collected from this study. The plasma vitamin C screening was p=0.3, and after 18 days of supplementation, p=0.03. For Nasal ICAM p=0.5 at Day 0, p=0.4 at Day 4, and p=0.9 at Day 18. For the Histamine samples p=0.9 at Day 0 and p=0.9 at Day 18. The following P-values calculated from the data collected from both studies. The plasma vitamin C screening was p=0.8, and after 18 days of supplementation, p=0.03. The change of vitamin C at the end of this study and the combined data both had a P-value that was calculated to be lower than 0.05, which meant that this change was significant because it was due to the intervention and not chance. For Nasal ICAM samples p=0.7 at Day 0, p=0.7 at Day 4, and p=1 at Day 18. For the Histamine p=0.7 at Day 0 and p=0.9 at Day 18. This study carries various implications although the study data was unable to show much significance. This was the second study to test this, and as more research is done, and the sample size grows, one will be able to observe whether this really is the mechanism through which vitamin C plays a role in immunological functions.
ContributorsKapadia, Chirag Vinay (Author) / Johnston, Carol (Thesis director) / LaBaer, Joshua (Committee member) / School of Molecular Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2015-12
136699-Thumbnail Image.png
Description
Colorectal cancer (CRC) is one of the most highly diagnosed cancers in the United States and accounts for 9.5% of all new cancer cases worldwide. With a 50% five-year prognosis, it is the second highest cancerous cause of death in the U.S. CRC tumors express antigens that are capable of

Colorectal cancer (CRC) is one of the most highly diagnosed cancers in the United States and accounts for 9.5% of all new cancer cases worldwide. With a 50% five-year prognosis, it is the second highest cancerous cause of death in the U.S. CRC tumors express antigens that are capable of inducing an immune response. The identification of autoantibodies (AAb) against tumor-associated antigens (TAA) may facilitate personalized tumor treatment in the form of targeted immunotherapy. The objective of this study was to observe the AAb expression raised against a 2000 human gene survey in late-stage colorectal cancer using the Nucleic Acid Programmable Protein Arrays (NAPPA). AAbs from serum samples were collected from 80 patients who died within 24 months of their last blood draw and 80 age and gender matched healthy control were profiled using NAPPA. TAA p53, a well-established protein that is one of the most highly mutated across a variety of cancers, was one of the top candidates based on statistical analysis, which, along with its family proteins p63 and p73 (which showed inverse AAb response profiles) warranted further testing via RAPID ELISA. Statistical analysis from these results revealed an inverse differential relationship between p53 and p63, in which p53 seropositivity was higher in patients than in controls, while the opposite was unexpectedly the case for p63. This study involving the AAb immunoprofiling of advanced stage CRC patients is one of the first to shed light on the high-throughput feasibility of immunoproteomic experiments using protein arrays as well as the identification of immunotherapy targets in a more rapid move towards specialized treatment of advanced CRC.
ContributorsSzeto, Emily (Author) / LaBaer, Joshua (Thesis director) / Qiu, Ji (Committee member) / Demirkan, Gokhan (Committee member) / Barrett, The Honors College (Contributor) / T. Denny Sanford School of Social and Family Dynamics (Contributor)
Created2014-12
136935-Thumbnail Image.png
Description
The focus of this project was to look at alternative treatments for endocrine resistant breast cancer (ERBC), which are breast cancers that have become resistant to hormone therapies such as Tamoxifen or aromatase inhibitors. The first part of this project involves investigating the relationship between histone de-acetylase inhibitor Vorinostat and

The focus of this project was to look at alternative treatments for endocrine resistant breast cancer (ERBC), which are breast cancers that have become resistant to hormone therapies such as Tamoxifen or aromatase inhibitors. The first part of this project involves investigating the relationship between histone de-acetylase inhibitor Vorinostat and Tamoxifen in MCF7 G11 cells, Tamoxifen resistant sub-clones, according to the PSOC Time grant. The second part involves targeting the androgen receptor (AR) in MCF7 sub-clones with AR antagonists, Bicalutamide and MDV3100, and investigating the possible usage of AR as a biomarker, due to over-expression of AR in ERBC, in accordance with the Mayo ASU Seed Grant.
The synergistic effects between Vorinostat and Tamoxifen observed through a phase II study on breast cancer patients resistant to hormone therapy may involve more than the modulation of ER-alpha to reverse Tamoxifen resistance in ERBC cells. RT-qPCR of genes expressed in Tamoxifen resistant cells, trefoil factor 1(TFF1) and v-myc avian myelocytomatosis viral oncogene homolog (MYC), were evaluated along with ESR1 and Diablo as a control. MYC was observed to have increased expression in the treated cells, whereas the other genes had a decrease in their expression levels after the cells were treated for 3 days with Vorinostat IC30 of 1 µM. As for targeting the AR, MCF7 Tamoxifen sensitive and resistant cells were not affected by the AR antagonists to determine an IC50. The cell viability for all MCF7 sub-clones only decreased for high concentrations of 5.56 µM - 50 µM in Bicalutamide and 16.67 µM – 50 µM of MDV1300. Furthermore, hormone depletion of MCF7 G11 Tamoxifen resistant sub-clones did not show a great response to DHT stimulation or the AR antagonists. In the RT-qPCR, the MCF7 G11 cells showed an increase in mRNA expression for ER, AR, and PR after 4 hours of treatment with estradiol. As for the DHT treatment, ER, AR, PR, and PSA had a minimal increase in the fold change, but the fold change in AR was less than in the estradiol treatment. The Mayo Clinic will investigate the possible usage of AR as a biomarker through immunohistochemistry.
ContributorsVorachitti, Merica (Author) / LaBaer, Joshua (Thesis director) / Anderson, Karen (Committee member) / Gonzalez, Laura (Committee member) / Barrett, The Honors College (Contributor) / School of Mathematical and Statistical Sciences (Contributor) / Department of Chemistry and Biochemistry (Contributor)
Created2014-05
137083-Thumbnail Image.png
Description
A coincidence reporter construct, consisting of the p21-promoter and two luciferase genes (Firefly and Renilla), was constructed for the screening of drugs that might inhibit Olig2's tumorigenic role in glioblastoma. The reporter construct was tested using an Olig2 inhibitor, HSP990, as well as short hairpin RNA targeting Olig2. Further confirmatory

A coincidence reporter construct, consisting of the p21-promoter and two luciferase genes (Firefly and Renilla), was constructed for the screening of drugs that might inhibit Olig2's tumorigenic role in glioblastoma. The reporter construct was tested using an Olig2 inhibitor, HSP990, as well as short hairpin RNA targeting Olig2. Further confirmatory analysis is needed before the reporter cell line is ready for high-throughput screening at the NIH and lead compound selection.
ContributorsCusimano, Joseph Michael (Author) / LaBaer, Joshua (Thesis director) / Mangone, Marco (Committee member) / Mehta, Shwetal (Committee member) / Barrett, The Honors College (Contributor) / Department of Chemistry and Biochemistry (Contributor)
Created2014-05
137685-Thumbnail Image.png
Description
Influenza remains a constant concern for public health agencies across the nation and worldwide. Current methods of surveillance suffice but they fall short of their true potential. Incorporation of evolutionary data and analysis through studies such as phylogeography could reveal geographic sources of variation. Identification and targeting of such sources

Influenza remains a constant concern for public health agencies across the nation and worldwide. Current methods of surveillance suffice but they fall short of their true potential. Incorporation of evolutionary data and analysis through studies such as phylogeography could reveal geographic sources of variation. Identification and targeting of such sources for public health initiatives could yield increased effectiveness of influenza treatments. As it stands there is a lack of evolutionary data available for such use, particularly in the southwest. Our study focused on the sequencing and phylogeography of southwestern Influenza A samples from the Mayo Clinic. We fully sequenced two neuraminidase genes and combined them with archived sequence data from the Influenza Research Database. Using RAxML we identified the clade containing our sequences and performed a phylogeographic analysis using ZooPhy. The resultant data were analyzed using programs such as SPREAD and Tracer. Our results show that the southwest sequences emerged from California and the ancestral root of the clade came from New York. Our Bayesian maximum clade credibility (MCC) tree data and SPREAD analysis implicates California as a source of influenza variation in the United States. This study demonstrates that phylogeography is a viable tool to incorporate evolutionary data into existing forms of influenza surveillance.
ContributorsTurnock, Adam Ryan (Author) / Scotch, Matthew (Thesis director) / Halden, Rolf (Committee member) / Pycke, Benny (Committee member) / Barrett, The Honors College (Contributor) / School of Life Sciences (Contributor)
Created2013-05
137712-Thumbnail Image.png
Description
Trichloroethene (TCE) and hexavalent chromium [Cr(VI)] are toxic and carcinogenic contaminants found in drinking water resources across the United States. A series of Bench-scale treatability studies were conducted to evaluate the effectiveness of a consortium of facultative and strictly anaerobic bacteria, KB-1®, to remove TCE and Cr(VI) from a contaminated

Trichloroethene (TCE) and hexavalent chromium [Cr(VI)] are toxic and carcinogenic contaminants found in drinking water resources across the United States. A series of Bench-scale treatability studies were conducted to evaluate the effectiveness of a consortium of facultative and strictly anaerobic bacteria, KB-1®, to remove TCE and Cr(VI) from a contaminated aquifer in San Diego. These series of treatability studies were also performed to prepare data and mature packed sediment columns for the deployment of the In Situ Microcosm Array (ISMA), a diagnostic device for determining optimal treatments for a contaminated aquifer, at this particular site. First, a control panel for the ISMA’s Injection Module (IM) was created in order to deliver nutrients to the columns. Then, a column treatability study was performed in order to produce columns with an established KB-1® consortium, so that all TCE in the column influent was converted to ethene by the time it had exited the column. Finally, a batch bottle treatability study was performed to determine KB-1®’s effectiveness at remediating both TCE and Cr(VI) from the San Diego ground-water samples. The results from the column study found that KB-1® was able to reduce TCE in mineral media. However, in the presence of site ground-water for the batch bottle study, KB-1® was only able to reduce Cr(VI) and no TCE dechlorination was observed. This result suggests that the dechlorinating culture cannot survive prolonged exposure to Cr(VI). Therefore, future work may involve repeating the batch bottle study with Cr(VI) removed from the groundwater prior to inoculation to determine if KB-1® is then able to dechlorinate TCE.
ContributorsDuong, Benjamin Taylor (Author) / Halden, Rolf (Thesis director) / Torres, Cesar (Committee member) / Krajmalnik-Brown, Rosa (Committee member) / Barrett, The Honors College (Contributor) / School of Dance (Contributor) / Chemical Engineering Program (Contributor)
Created2013-05
137727-Thumbnail Image.png
Description
Plastics continue to benefit society in innumerable ways, even though recent public focus on plastics has centered mostly on human health and environmental concerns, including their endocrine-disrupting properties and the long-term pollution they represent. The benefits of plastics are particularly apparent in medicine and public health. Plastics are versatile, cost-effective,

Plastics continue to benefit society in innumerable ways, even though recent public focus on plastics has centered mostly on human health and environmental concerns, including their endocrine-disrupting properties and the long-term pollution they represent. The benefits of plastics are particularly apparent in medicine and public health. Plastics are versatile, cost-effective, require less energy to produce than alternative materials like metal or glass, and can be manufactured to have many different properties. Due to these characteristics, polymers are used in diverse health applications like disposable syringes and intravenous bags, sterile packaging for medical instruments as well as in joint replacements, tissue engineering, etc. However, not all current uses of plastics are prudent and sustainable, as illustrated by the widespread, unwanted human exposure to endocrine-disrupting bisphenol A (BPA) and di-(2-ethylhexyl) phthalate (DEHP), problems arising from the large quantities of plastic being disposed of, and depletion of non-renewable petroleum resources as a result of the ever-increasing mass production of plastic consumer articles. Using the health-care sector as example, this review concentrates on the benefits and downsides of plastics and identifies opportunities to change the composition and disposal practices of these invaluable polymers for a more sustainable future consumption. It highlights ongoing efforts to phase out DEHP and BPA in the health-care and food industry and discusses biodegradable options for plastic packaging, opportunities for reducing plastic medical waste, and recycling in medical facilities in the quest to reap a maximum of benefits from polymers without compromising human health or the environment in the process.
ContributorsNorth, Emily Jean (Co-author) / Halden, Rolf (Co-author, Thesis director) / Mikhail, Chester (Committee member) / Hurlbut, Ben (Committee member) / Barrett, The Honors College (Contributor) / School of Mathematical and Statistical Sciences (Contributor) / Chemical Engineering Program (Contributor)
Created2013-05
137735-Thumbnail Image.png
Description
The pathogenesis of type 1 diabetes (T1D) is still not fully understood in the scientific community. Evidence has shown that viral infections are one of the important environmental factors associated with the disease development. Seven of the top T1D related viruses were selected to study the prevalence of viral humoral

The pathogenesis of type 1 diabetes (T1D) is still not fully understood in the scientific community. Evidence has shown that viral infections are one of the important environmental factors associated with the disease development. Seven of the top T1D related viruses were selected to study the prevalence of viral humoral response in T1D patients using our innovative protein array platform called Nucleic Acid Programmable Protein Array (NAPPA). In this study, each viral gene was individually captured using various PCR based techniques, cloned into a protein expression vector, and assembled as the first version of T1D viral protein array. Humoral responses of IgG, IgA, and IgM were examined. Although each class of immunoglobulin generated a wide-range of reactivity, responses to various viral proteins from different proteins were observed. In summary, we captured most of the T1D related viral genes, established viral protein expression on the protein array, and displayed the serum response on the viral protein array. The successful progress will help to fulfill the long term goal of testing the viral infection hypothesis in T1D development.
ContributorsDavis, Amy Darlene (Author) / LaBaer, Joshua (Thesis director) / Qiu, Ji (Committee member) / Desi, Paul (Committee member) / Barrett, The Honors College (Contributor) / Department of Chemistry and Biochemistry (Contributor)
Created2013-05
137273-Thumbnail Image.png
Description
Protein AMPylation is a recently discovered and relatively unstudied post-translational modification (PTM). AMPylation has previously been shown to play an important role in metabolic regulation and host pathogenesis in bacteria, but the recent identification of potential AMPylators across many species in every domain of life has supported the possibility that

Protein AMPylation is a recently discovered and relatively unstudied post-translational modification (PTM). AMPylation has previously been shown to play an important role in metabolic regulation and host pathogenesis in bacteria, but the recent identification of potential AMPylators across many species in every domain of life has supported the possibility that AMPylation could be a more fundamental and physiologically significant regulatory PTM. For the first time, we characterized the auto-AMPylation capability of the human protein SOS1 through in vitro AMPylation experiments using full-length protein and whole-domain truncation mutants. We found that SOS1 can become AMPylated at a tyrosine residue possibly within the Cdc25 domain of the protein, the Dbl homology domain is vital for efficient auto-AMPylation activity, and the C-terminal proline-rich domain exhibits a complex regulatory function. The proline-rich domain alone also appears to be capable of catalyzing a separate, unidentified covalent self-modification using a fluorescent ATP analogue. Finally, SOS1 was shown to be capable of catalyzing the AMPylation of two endogenous human protein substrates: a ubiquitous, unidentified protein of ~49kDa and another breast-cancer specific, unidentified protein of ~28kDa.
ContributorsOber-Reynolds, Benjamin John (Author) / LaBaer, Joshua (Thesis director) / Borges, Chad (Committee member) / Barrett, The Honors College (Contributor) / Department of Chemistry and Biochemistry (Contributor) / School of Life Sciences (Contributor)
Created2014-05
137471-Thumbnail Image.png
Description
AMPylation is a post-translation modification that has an important role in the survival of many bacterial pathogens by affecting the host cell's molecular signaling. In the course of studying this intercellular manipulation, there has only been modest progression in the identification of the enzymes with AMPylation capabilities (AMPylators) and their

AMPylation is a post-translation modification that has an important role in the survival of many bacterial pathogens by affecting the host cell's molecular signaling. In the course of studying this intercellular manipulation, there has only been modest progression in the identification of the enzymes with AMPylation capabilities (AMPylators) and their respective targets. The reason for these minimal developments is the inability to analyze a large subset of these proteins. Therefore, to increase the efficiency of the identification and characterization of the proteins, Yu et al developed a high-throughput non-radioactive discovery platform using Human Nucleic Acid Programmable Protein Arrays (NAPPA) and a validation platform using bead-based assays. The large-scale unbiased screening of potential substrates for two bacterial AMPylators containing Fic domain, VopS and IbpAFic2, had been performed and dozens of novel substrates were identified and confirmed. With the efficiency of this method, the platform was extended to the identification of novel substrates for a Legionella virulence factor, SidM, containing a different adenylyl transferase domain. The screening was performed using NAPPA arrays comprising of 10,000 human proteins, the active AMPylator SidM, and its inactive D110/112A mutant as a negative control. Many potential substrates of SidM were found, including Rab GTPases and non-GTPase proteins. Several of which have been confirmed with the bead-based AMPylation assays.
ContributorsGraves, Morgan C. (Author) / LaBaer, Joshua (Thesis director) / Qiu, Ji (Committee member) / Yu, Xiaobo (Committee member) / Barrett, The Honors College (Contributor) / Department of Chemistry and Biochemistry (Contributor)
Created2013-05